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Cortical networks exhibit complex stimulus-response patterns that are based on specific recurrent interactions between

neurons. For example, the balance between excitatory and inhibitory currents has been identified as a central component

of cortical computations. However, it remains unclear how the required synaptic connectivity can emerge in developing

circuits where synapses between excitatory and inhibitory neurons are simultaneously plastic. Using theory and model-

ing, we propose that a wide range of cortical response properties can arise from a single plasticity paradigm that acts

simultaneously at all excitatory and inhibitory connections – Hebbian learning that is stabilized by the synapse-type-

specific competition for a limited supply of synaptic resources. In plastic recurrent circuits, this competition enables

the formation and decorrelation of inhibition-balanced receptive fields. Networks develop an assembly structure with

stronger synaptic connections between similarly tuned excitatory and inhibitory neurons and exhibit response normal-

ization and orientation-specific center-surround suppression, reflecting the stimulus statistics during training. These

results demonstrate how neurons can self-organize into functional networks and suggest an essential role for synapse-

type-specific competitive learning in the development of cortical circuits.

C
omputation in neural circuits is based on the interactions

between recurrently connected excitatory (E) and in-

hibitory (I) neurons (1–4). In sensory cortices, response

normalization, surround and gain modulation, predictive pro-

cessing, and attention all critically involve inhibitory neurons (5–

10). Theoretical work has highlighted the experimentally ob-

served balance of stimulus selective excitatory and inhibitory

input currents as a critical requirement for many neural compu-

tations (11–16). For example, recentmodels based on balanced

E-I networks can explain a wide range of cortical phenomena,

such as cross-orientation and surround suppression (17, 18),

as well as stimulus-induced neural variability (19–21). A major

caveat of these models is that the network connectivity is usu-

ally static and designed by hand, albeit based on experimental

measurements. In contrast, in the brain, synapses are plas-

tic and adjust to the statistics of sensory inputs. How synap-

tic weights self-organize in a biologically plausible manner to

generate many of the non-linear response properties observed

experimentally is not well understood. Earlier theoretical work

on inhibitory plasticity has focused on the balance of excitation

and inhibition in single neurons (22–24), but has not been able to

explain the development of inhibition-balanced receptive fields

when excitatory and inhibitory inputs are both plastic. In more

recent recurrent network models, only a fraction of excitatory

and inhibitory synapse-types are modeled as plastic and neu-

ral responses exhibit a narrow subset of the different response

patterns recorded in experiments (14, 25–29).

Here we present a Hebbian learning framework with mini-

mal assumptions that explains a wide range of experimental

observations. Our framework is based on two key proper-

ties: First, all synaptic strengths evolve according to a Heb-

bian plasticity rule that is stabilized by the competition for a lim-

ited supply of synaptic resources (30–33). Second, motivated

by the unique protein composition of excitatory and inhibitory

synapses, different synapse-types compete for separate re-

source pools. Building on classical work on Hebbian plasticity

(30, 31), we develop an analytical framework that provides an

intuitive understanding of the weight dynamics in recurrent net-

works of excitatory and inhibitory neurons. In numerical simula-

tions, we reveal how the synapse-type-specific competition for

resources enables the self-organization of neurons into func-

tional networks. Beyond the formation of inhibition-balanced

feedforward receptive fields, we demonstrate that emergent re-

current connectivity can generate a wide range of computations

observed in cortical circuits.

Results

Synapse-type-specific plasticity enables the joint develop-

ment of stimulus selectivity and E-I balance. To understand

plasticity in recurrently connected E-I networks, we considered

simplified circuits of increasing complexity. We first asked how
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Cortical circuits perform diverse computations, primar-

ily determined by highly structured synaptic connectiv-

ity patterns that develop during early sensory experience

via synaptic plasticity. To understand how these struc-

tured connectivity patterns emerge, we introduce a gen-

eral learning framework for networks of recurrently con-

nected neurons. The framework is rooted in the biologi-

cally plausible assumption that synapses compete for lim-

ited synaptic resources, which stabilizes synaptic growth.

Motivated by the unique protein composition of differ-

ent synapse types, we assume that different synapse

types compete for separate resource pools. Using theory

and simulation, we show how this synapse-type-specific

competition allows the stable development of structured

synaptic connectivity patterns, as well as diverse compu-

tations like response normalization and surround suppres-

sion.
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Figure 1: Synapse-type-specific competitive Hebbian learning enables the development of stimulus selectivity and inhibitory balance. (A)
Feedforward input to a model pyramidal neuron (blue triangle) during stimulation. The neuron receives direct excitation (lightblue) and disynaptic
inhibition (red). Plastic synapses are marked by *. (B) A single postsynaptic pyramidal neuron receives synaptic input from a population of
excitatory (wE ), and a population of inhibitory (wI) neurons. (C) Excitatory and inhibitory input neurons are equally tuned to the orientation of
a stimulus grating (bottom, tuning curve of neurons tuned to 60◦ highlighted in dark gray) and exhibit a Gaussian-shaped population response
(orange, solid line) when a single grating of 30◦ is presented (orange plate, dashed line). (D) Hebbian potentiation of a synapse (**) is normalized
due to a limited amount of synaptic resources in the dendritic branch, here reflected by a fixed number of synaptic channels (green). (E) Weight
convergence of synapses of the feedforward circuit in B, where excitatory (blue) and inhibitory (red) weights are plastic according to synapse-
type-specific competitive Hebbian learning. All synaptic weights were initialized randomly. (F) Final synaptic weight strengths, after training, as
a function of the tuning peak of the corresponding presynaptic neurons. (G) Excitatory synaptic weight vector (blue arrow) of a single pyramidal
neuron with linear activation function. The pyramidal neuron receives input from two excitatory neurons (y1 and y2, compare inset). Each dot
corresponds to one input pattern. After training, the weight vector aligns with the direction of maximum variance, which corresponds to the
principal eigenvector of the input covariance matrix. (H & I) Same as in E and F, but for classic inhibitory plasticity. The development of stimulus
selectivity is prevented by fast inhibitory plasticity. (J) Excitatory (blue) and inhibitory (red) synaptic weight vectors of a single pyramidal neuron
with linear activation function. The pyramidal neuron receives input from two pairs of excitatory and inhibitory neurons (y1 and y2, compare inset).
Each excitatory-inhibitory input pair has identical firing activities yi . After training via synapse-type-specific competitive Hebbian learning, the
excitatory and inhibitory weight vectors both align with the principal component, i.e., excitatory and inhibitory synaptic weights are balanced.

E-I balance and stimulus selectivity can simultaneously develop

in a single neuron. The neuron receives input from an upstream

population of excitatory neurons, and disynaptic inhibitory in-

put from a population of laterally connected inhibitory neurons

that themselves receive input from the same upstream popu-

lation (Fig. 1A). We studied the self-organization of excitatory

and inhibitory synapses that project onto the single postsynap-

tic neuron (Fig. 1B), assuming that input synapses that project

onto inhibitory neurons remained fixed (Fig. 1A). Following ex-

perimental results (34–37), we assumed that inhibitory and exci-

tatory input neurons are equally selective for the orientation of a

stimulus grating (Fig. 1C, bottom). We presented uniformly dis-

tributed oriented stimuli to the network in random order. Stimuli

elicited a Gaussian-shaped response in the population of input

neurons (Fig. 1C, top) and thus drove the postsynaptic neuron

(see Methods for details). Synapses are plastic according to a

basic Hebbian rule:

∆wA ∝ yAr, A ∈ {E, I}, [1]

where r is the postsynaptic firing rate, yA is a vector that holds

the presynaptic firing rates of excitatory (A = E) and inhibitory

(A = I) neurons, and∆wA are the corresponding synaptic weight

changes. Experimental results have shown that after the induc-

tion of long-term plasticity neither the total excitatory nor the

total inhibitory synaptic area change (32). This suggests that a

synapse can only grow at the expense of another synapse —

a competitive mechanism potentially mediated by the limited

supply of synaptic proteins (Fig. 1D) (33). Motivated by these

results, we adopted a competitive normalization rule for both

excitatory and inhibitory synapses:

wA ← WA
wA + ∆wA

‖wA + ∆wA‖
, [2]

where A ∈ {E, I}, and WE , WI are the maintained total exci-

tatory and inhibitory synaptic weight, respectively. Shortly af-

ter random initialization, excitatory and inhibitory weights stabi-

lize (Fig. 1E) and form aligned, Gaussian-shaped tuning curves

(Fig. 1F) that reflect the shape of the input stimuli (Fig. 1C). As a

result, neural responses become orientation selective while in-

hibitory and excitatory inputs are equally tuned, which demon-

strates the joint development of stimulus selectivity and E-I bal-

ance.

Excitatory plasticity performs principal component analy-

sis. To uncover the principles of synapse-type-specific com-

petitive Hebbian learning, we analyzed the feedforward model

analytically. It is well established that in the absence of inhibi-

tion, competitive Hebbian learning rules generate stimulus se-

lective excitatory receptive fields (30, 31). In the case of a linear

activation function, r ∝ u ≡ wT y, the expected total synaptic

efficacy changes can be expressed as (31):

〈 ¤wE〉 ∝ CwE − γwE , [3]

were C = 〈yEyE
ᵀ〉 is the input covariance matrix, with 〈·〉 be-

ing the temporal average, and γ is a scalar normalization factor

that regulates Hebbian growth. Then, fixed points, for which

〈 ¤wE〉 = 0, are eigenvectors of the covariance matrix. The neu-

ron becomes selective to the first principal component of its
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input data, i.e., the fixed point input weight vector aligns with

the input space direction of maximum variance (30, 31) (Fig. 1G;

see Supplementary Material (SM) Sec. 1.2 for details). For non-

linear activation functions r = f (u), neurons become selective

for higher-order correlations, e.g., independent components, in

their inputs (38, 39). Such learning rules have been shown to

result in feedforward receptive fields that resemble simple cell

receptive fields in visual cortex (40, 41). In the following, we call

the fixed points of such pure feedforward circuits ‘input modes’.

This entails principal components, in the case of linear activa-

tion functions, and more complex, e.g., simple-cell-like, recep-

tive fields in the case of non-linear activation functions.

Classic inhibitory plasticity prevents stimulus selectivity.

We next examined how inhibitory plasticity affects the devel-

opment of stimulus selectivity. Previous work has suggested

that inhibitory synaptic plasticity in the cortex is Hebbian (42,

43) and imposes a target firing rate r0 on the postsynaptic neu-

ron (23):

〈 ¤wI〉 ∝ 〈yI (r − r0)〉, [4]

where synaptic change becomes zero when the postsynaptic

firing rate r is equal to the target rate r0. With this ‘classic’ in-

hibitory plasticity rule, inhibitory synaptic weight growth is un-

bounded. However, since an increase of inhibitory synaptic

weights usually entails a decrease in postsynaptic firing rate

r the plasticity rule is self-limiting and synaptic weights stop

growing once the target firing rate r0 is reached. When excita-

tory synaptic weights remain fixed, classic inhibitory plasticity

leads to balanced excitatory and inhibitory input currents (23).

However, when excitatory synaptic weights are also plastic,

neurons develop no stimulus selectivity (24): Classic inhibitory

plasticity must act on a faster timescale than excitatory plastic-

ity to maintain stability (24). Then the postsynaptic target firing

rate is consistently met and average excitatory synaptic weight

changes only differ amongst each other due to different aver-

age presynaptic firing rates, which prevents the development of

stimulus selectivity (Fig. 1H & I; see SM Sec. 1.2.3 for details).

Synapse-type-specific competition enables balanced prin-

cipal component analysis. Synapse-type-specific competi-

tive Hebbian learning (Eq. 1, and 2) enables the joint devel-

opment of stimulus selectivity and balanced input currents.

In contrast to classic inhibitory plasticity, under synapse-

type-specific competitive Hebbian learning, inhibitory synaptic

growth is not stabilized by a target firing rate. Instead, as excita-

tory synapses, inhibitory synapses compete for a limited supply

of synaptic resources that maintain the total amount of synaptic

strength. As we did for excitatory synapses (Eq. 3), we incorpo-

rated the normalization step (Eq. 2) into the update rule (Eq. 1)

and considered the simpler case of a linear activation function

f (u) ∝ u:

〈 ¤w〉 ∝ Cw − γ
(
wE

0

)
− ρ

(
0

wI

)
, [5]

w =

(
wE

wI

)
, C ≡

〈(
yEyE

ᵀ −yEyI
ᵀ

yIyE
ᵀ −yIyI

ᵀ

)〉
, [6]

where γ and ρ are scalars that ensure normalization of excitatory

and inhibitory weights, respectively. In addition, we defined the

modified covariance matrix C. Then multiples of the excitatory
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Figure 2: Feedforward tunings are affected by lateral input in mi-

crocircuitmotifs. (A) In addition to feedforward input from a population
of orientation tuned excitatory cells (blue circle), a neuron receives lat-
eral input from an excitatory neuron with fixed feedforward tuning (light
blue). * indicates plastic synapses. Feedforward tuning curves of the
two neurons are shown before (center row) and after (bottom row) train-
ing. (B) Same as in A, for lateral input from multiple inhibitory neurons
with fixed feedforward tuning. (C) Same as in A, for two recurrently con-
nected excitatory neurons with all feedforward and recurrent synapses
plastic. (D) Same as in C, for inhibitory neurons. All synapses plastic.

and the inhibitory part of the eigenvectors of the modified co-

variance matrix C are fixed points of the weight dynamics (see

SM Sec. 2 for details). When excitatory and inhibitory inputs

are equally stimulus selective, such that one can approximate

yE ∝ yI, the modified covariance matrix C is composed of mul-

tiples of the original covariance matrixC (cf. Eq. 6). This implies

that, if excitatory and inhibitory synaptic weights have identical

shape, wE ∝ wI, equal to a multiple of an eigenvector of C, the

system is in a fixed point (Fig. 1J), where 〈 ¤w〉 = 0 (cf. Eq. 5).

Neurons become selective for activity along one particular in-

put direction, while excitatory and inhibitory neural inputs are

co-tuned, which explains the joint development of stimulus se-

lectivity and E-I balance in feedforward circuits, in agreement

with our numerical simulations with non-linear activation func-

tions (Fig. 1E & F).

Lateral inputs shape feedforward weight dynamics. We

wanted to understand how fully plastic recurrent networks of

excitatory and inhibitory neurons can self-organize into func-

tional circuits. Therefore, we next investigated the effect of

synapse-type-specific competitive Hebbian learning in recur-

rent networks.

In a first step, we considered how lateral input from an ex-

citatory neuron with fixed selectivity for a specific feedforward

input mode affects synaptic weight dynamics in a simple mi-

crocircuit motif (Fig. 2A, top). We observed that a downstream

neuron becomes preferentially tuned to the feedforward input

mode of the lateral projecting neuron (Fig. 2A, bottom; cf. SM

Sec. 3). Similarly, laterally projecting inhibitory neurons repel

downstream neurons from their inputmodes (Fig. 2B). However,

when two excitatory neurons are reciprocally connected, they

pull each other towards their respective input modes, and their

tuning curves and activities become correlated (Fig. 2C). This

contradicts experimental observations that brain activity decor-

relates over development (44, 45). In line with these results, in

our model, interconnected inhibitory neurons repel each other

and their tuning curves decorrelate (Fig. 2D).
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Figure 3: Tuning curve decorrelation in plastic recurrent networks. (A) Top: A population of recurrently connected excitatory and inhibitory
neurons receives input from a set of input neurons that are tuned to different stimulus orientations (cf. Fig. 1B, bottom). Every 200ms a different
orientation is presented to the network (vertical gray lines). At the same time, all synapses exhibit plasticity according to a synapse-type-specific
Hebbian rule (see Methods). Bottom: typical firing rate activity of one excitatory (blue) and one inhibitory (red) neuron before and after training. (B)
Feedforward tuning curves of NE = 10 excitatory neurons before (t0, top), during (t1, center), and after (t2, bottom) training. Synaptic weights were
initialized randomly. Different color shades indicate weights of different postsynaptic neurons. Compare SM Movies S1 & S2. (C) Feedforward
population tuning uniformity (see Methods) of excitatory and inhibitory neurons in B. Time points t0, t1, t2 correspond to time points in B. (D)
Connectivity matrices after training a network of NE = 80 excitatory (blue) and NI = 20 inhibitory (red) neurons. Neurons are sorted according

to their preferred orientation θ̂, as measured by their peak response to different oriented gratings. wAB
max is the largest synaptic weight between

population A and B; A,B ∈ {E, I}. (E) Normalized (norm.) recurrent weight strengths as a function of the difference between preferred orientations
of the pre- and postsynaptic neurons, ∆θ̂ = θ̂post − θ̂pre, averaged over all neuron pairs. Input weights to excitatory (solid) and inhibitory (dashed)
neurons overlap. (F) Average firing rate response of inhibitory and excitatory neurons to a stimulus orientation θ, relative to their preferred
orientation, ∆θ = θ̂ − θ, averaged over all neurons. Curves for excitatory (blue) and inhibitory (red) neurons overlap. (G) Same as in F, but for
average excitatory and inhibitory inputs to excitatory neurons. (H) Inhibitory input to an excitatory neuron with preferred orientation close to 90◦.
Each curve corresponds to the input from one presynaptic inhibitory neuron for stimuli of different orientations θ.

Tuning curve decorrelation in fully plastic recurrent E-I net-

works. Recent experimental studies have suggested that in-

hibitory neurons drive decorrelation of neural activities (46,

47). Hence, we asked whether the interaction between ex-

citatory and inhibitory neurons can serve to decorrelate not

only inhibitory but also excitatory neural activities. To address

this question we explored the consequences of synapse-type-

specific competitive Hebbian learning in a network of recur-

rently connected excitatory and inhibitory neurons. We pre-

sented different oriented gratings in random order to a net-

work where all feedforward and recurrent synapses are plas-

tic (Fig. 3A, top). We observed a sharp increase in response

selectivity (Fig. 3A, bottom) that is reflected in the reconfigura-

tion of feedforward synaptic weights (cf. SM Movies S1 & S2):

Shortly after random initialization (Fig. 3B, top), excitatory neu-

rons predominantly connect to a subset of input neurons with

similar stimulus selectivities (Fig. 3B, center left). We quantified

the uniformity of the distribution of feedforward tuning curves

during training (Fig. 3C, see Methods) and found that inhibitory

neurons maintained a much wider coverage of the input stim-

ulus space than the excitatory population (cf. Fig. 3B, center,

t1). Eventually, tuning curves of excitatory as well as inhibitory

neurons decorrelate and cover the whole stimulus space with

minimal overlap (Fig. 3B, bottom), in sharp contrast to circuits

without inhibition, where tuning curves become clustered (cf.

Fig. 2C). After training, neurons are organized in an assembly-

like structure. Neurons that are similarly tuned became more

strongly connected (Fig. 3D & E), as is observed experimen-

tally (48–58). We found that inhibitory neurons become as se-

lective for stimulus orientations as excitatory neurons (34–37)

(Fig. 3F), while excitatory input is balanced by similarly tuned in-

hibitory input (Fig. 3G) from multiple overlapping inhibitory neu-

rons (Fig. 3H), in agreement with experimental results (12, 59–

64); but see (65–70).

In summary, we find that synapse-type-specific competitive

Hebbian learning in fully plastic recurrent networks is sufficient

to decorrelate neural activities and leads to preferential connec-

tivity between similarly tuned neurons, as observed in cortical

circuits.

Inhibitory neurons balance excitatory attraction and enable

decorrelation. To uncover how recurrent inhibition can pre-

vent all neurons from becoming selective for a single input

mode, we investigated the fundamental principles of synapse-

type-specific competitive Hebbian learning in recurrent net-

works analytically (SM Sec. 5). In the simplified case of linear

activation functions, input modes are eigenvectors of the input

covariance matrix (cf. Eq.3). Since these eigenvectors are or-

thogonal by definition (Fig. 4A), the activities of neurons that

are tuned to different eigenvectors are uncorrelated, and their

reciprocal connections decay to zero under Hebbian plastic-

ity (Fig. 4B). Then, neurons that are tuned to the same input

mode form recurrent ‘eigencircuits’ that are otherwise sepa-

rated from the rest of the network (SM Sec. 4). We characterize

Eckmann et al., 2024 | Accepted manuscript 4
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Figure 4: Illustration of eigencircuit decomposition and attraction.

(A) Feedforward synaptic weight vectors wa, wb of two neurons that
are tuned to two different principal components (top, purple and green)
of the input data. Each dark blue dot represents one presynaptic firing
pattern (cf. Fig. 1G). (B) Synaptic weightswab between neurons that are
tuned to different eigenvectors decay to zero, while neurons tuned to
the same eigenvector form recurrently connected eigencircuits (purple).
(C) As single, laterally projecting neurons shape the effective attraction
of their input mode (left; cf. Fig.2), eigencircuits also increase or de-
crease the effective attraction of their respective eigenvector direction
(right). (D) A recurrent network of excitatory (triangles) and inhibitory
(circles) neurons that are distributed across four decoupled eigencir-
cuits (EC, top). Each excitatory neuron contributes plus one (+), each
inhibitory neuron minus one (-) to the eigencircuit attraction, λeig (solid
line, bottom). Due to synaptic plasticity, neurons are pulled towards
the most attractive eigencircuit, EC3 (gray dashed arrows, top). After
all neurons integrate into the same eigencircuit (EC3), its attraction be-
comes negative, while the now unoccupied eigencircuits (EC1, EC2,
EC4) are neutral (dashed line, bottom).

a mode’s effective attraction as a number such that, if a mode

has a higher attraction than a competing mode, then neurons

responding to the mode with lower attraction are unstable and

shift their tuning towards the mode with higher attraction (see

SM for details). Just like single, laterally projecting neurons (SM

Sec. 3), eigencircuits also modify the effective attraction of their

input mode (Fig. 4C). The decomposition of the network into

eigencircuits allows to write the effective attraction λ of each

input mode as the sum of a feedforward component λ and the

variances of the firing rates of the neurons that reside in the

respective eigencircuit (cf. SM Sec. 4.1 & 4.2):

λ = λ + λeig = λ +
∑
i

σ2
E,i −

∑
j

σ2
I,j, [7]

where we defined the contribution of recurrently projecting neu-

rons to the effective attraction of an input mode as the eigen-

circuit attraction, λeig. Note that, in general, variances σ2
E/I de-

pend on the total synaptic weights, and the number of exci-

tatory and inhibitory neurons in the eigencircuit (SM Sec. 4.2).

This reveals that the attractive and repulsive effects of excita-

tory and inhibitory neurons can balance each other. In a sim-

plified example, we assumed that all input modes have equal

feedforward attraction, equal to λ, while each excitatory neuron
contributes plus one and each inhibitory neuron minus one to

the effective attraction (Fig. 4D, top). Then the eigencircuit at-

tractions becomes λeig = nE − nI (Fig. 4D, bottom, solid line).

In this configuration, the network is unstable: All neurons are

attracted towards the input mode with the highest effective at-

traction (EC3), which suggests that all tuning curves will even-

tually collapse onto the same input mode. However, when all

neurons become selective to the most attractive input mode,

that mode would become repulsive (Fig. 4D, bottom, dashed

gray line), as each increase in attraction due to an additional

excitatory neuron is balanced by a decrease in attraction due

to two additional inhibitory neurons. Consequently, the result-

ing eigencircuit is unstable and neurons are repelled towards

non-repulsive, unoccupied input modes; distributed across the

stimulus space.

While this example conveys the core principle of how recur-

rently connected neurons adjust their tunings, the actual dy-

namics of synaptic weights are more complex (SM Sec. 5). In

particular, neurons do not switch their tuning between input

modes in discrete steps but shift their tuning gradually. Due

to the recurrent nature of the circuit, even small tuning shifts

affect the attractions of the respective eigencircuits (cf. SM

Sec. 5.2.3). In our simulations, we therefore never observe a full

collapse of all tuning curves onto the same input mode before

neurons distribute across the stimulus space. Instead, neurons

rapidly develop tuned feedforward receptive fields that gradu-

ally shift to maximise tuning uniformity, with little to no oscilla-

tory dynamics (Fig. 3B & C and SM Movies S1 & S2).

In the simplified case of linear activation functions, we derive

the following condition that prevents the collapse of all tuning

curves onto a single input mode:

NEσ
2
E
< NIσ

2
I
, [8]

where σ2
E
, σ2

I
are the average of the variances of the excitatory

and inhibitory firing rates, and NE , NI are the total number of

neurons in the network (cf. SM Sec. 5.2.4). These results show

that recruiting recurrent inhibition can prevent tuning curve col-

lapse and enables decorrelation, where a lower number of in-

hibitory neurons can be compensated by an increase in neural

activation.

Plastic recurrent E-I networks perform response normal-

ization and exhibit winner-takes-all dynamics. Our results

thus far reveal how synapse-type-specific competitive Hebbian

learning can explain the development of structured recurrent

connectivity. We next asked whether synapse-type-specific

competitive Hebbian learning can also explain the emergence

of non-linear network computations. For example, the firing

rate response of neurons in the visual cortex to multiple over-

layed oriented gratings is normalized in a non-linear fashion

(71, 72). While this form of normalization is mostly of thala-

mic origin (73–75), there is most likely also a cortical compo-

nent(72, 76). A recently introduced E-I network model with

static, hand-crafted connectivity can explain these modula-

tions (18, 77). We explored if the recurrent connectivity can

instead be learned from a network’s input stimulus statistics.

We consider a circuit with fixed feedforward tuning and plas-

tic recurrent connectivity (Fig. 5A). After training the network

with single oriented grating stimuli (Fig. 5A, bottom), we found

that neural responses to a cross-oriented mask grating that

is presented in addition to a regular test grating are normal-

ized, i.e., the response to the combined stimulus is weaker than

the sum of the responses to the individual gratings (Fig. 5B,
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left). When the contrast of the mask grating is lower than the

test grating’s, the network responds in a winner-takes-all fash-

ion: The higher-contrast test grating dominates activities while

the lower-contrast mask grating is suppressed (Fig. 5B, right).

As observed experimentally (71, 72, 78), we found that this

orientation-specific response normalization is divisive and shifts

the log-scale contrast-response function to the right (Fig. 5C).

Sensory input statistics shape computational functions of

recurrent circuits. We next investigated how the stimulus

statistics during training affect receptive field properties. We

considered a plastic network where two neural populations re-

ceive tuned input from either a center or a surround region of

the visual field (Fig. 5D). During training, we presented either

the same oriented grating in both regions (Fig. 5E, top, pur-

ple), or a single grating in just one region (Fig. 5E, bottom, red),

at 50% contrast (cf. Table 1). These stimulus statistics heav-

ily influenced the recurrent connectivity structure in the net-

work. When identical oriented stimuli are presented to the cen-

ter and surround regions during training, neurons with similar

orientation tuning become most strongly connected, indepen-

dent from which region the neurons receive their feedforward

input (Fig. 5F). However, when the center and surround regions

are stimulated separately during training, neurons only connect

to similarly tuned neurons within the same region and cross-

region connectivity decays to zero (Fig. 5G). These differences

in the recurrent connectivity structure are also reflected in the

networks’ response properties. We found that after training, the

response of center-tuned neurons exhibits orientation-specific

surround suppression, reflecting the stimulus statistics during

training. When the center and the surround regions are stim-

ulated separately during training, iso- or cross-oriented stimuli

in the surround both elicit minimal suppression of the center-

tuned population’s response to a center stimulus (Fig. 5H & I,

red). In contrast, in the case of correlated stimulation of the

center and surround regions during training, the response of the

center population is markedly suppressed when an additional

surround stimulus is presented (Fig. 5H & I, purple). Importantly,

suppression is stronger for iso- compared to cross-orientations

(Fig. 5I, solid and dashed lines), as has been reported exper-

imentally (79–82). We further investigated the lateral interac-

tions between neurons tuned to the center and surround re-

gions by presenting an oriented stimulus only in the surround

region, while observing the total excitatory and inhibitory inputs

to excitatory neurons (Fig. 5J). We found that the total excita-

tory input to stimulated excitatory neurons in the surround was

larger than the total inhibitory input (Fig. 5J, right column). When

center and surround neurons were stimulated together during

training, both center and surround received similar, balanced

E and I recurrent input, but the surround cells also received

feedforward excitation, yielding more total excitation (Fig. 5J,

top, purple). When center neurons were not stimulated with the

surround neurons during training, they received no input from

a surround-only stimulus (Fig. 5J, bottom, red). In the case of

correlated stimulation of the center and surround regions during

training, this lateral input was orientation-specific. Center neu-

rons tuned to the same orientations as stimulated neurons in the

surround received stronger input than center neurons tuned to

different orientations (Fig. 5J, top left), reflecting the input stim-

ulus statistics during training (Fig. 5E) and the resulting recur-

rent connectivity (Fig. 5F). A similar balance of excitatory and

inhibitory lateral inputs has previously been observed in bar-

rel cortex (83). Together, this demonstrates that synapse-type-

specific competitive Hebbian learning produces extra-classical

receptive fields that modulate feedforward responses via recur-

rent interactions that reflect the input statistics during training.

Discussion

Our results suggest that synapse-type-specific competitive

Hebbian learning is the key mechanism that enables the for-

mation of functional recurrent networks. Rather than hand-

tuning connectivity to selectively explain experimental data,

our circuits emerge from a single unsupervised, biologically

plausible learning paradigm that acts simultaneously at all

synapses. In a single framework, our networks readily explain

multiple experimental observations, including the development

of stimulus selectivity, excitation-inhibition balance, decorre-

lated neural activity, assembly structures, response normaliza-

tion, and orientation-specific surround suppression. These re-

sults demonstrate how the connectivity of inhibition-balanced

networks is shaped by their input statistics and explain the

experience-dependent formation of extra-classical receptive

fields (84–88). Unlike previous models (89–94), our networks

are composed of excitatory and inhibitory neurons with fully

plastic recurrent connectivity.

Early theoretical work on inhibitory plasticity assumed that

synapses evolve to maintain the mean firing rate of postsynap-

tic excitatory neurons (23). When excitatory input is static, this

leads to neural tunings where inhibition and excitation are bal-

anced. However, when excitatory synapses are simultaneously

plastic according to a simple Hebbian rule, the circuit is unsta-

ble and can not explain the joint development of feedforward

stimulus tuning and inhibitory balance (24) (SM Sec. 1.2.3). The

system can be stabilized when the Hebbian growth of exci-

tatory synapses is controlled by a BCM-like plasticity thresh-

old. This introduces fierce competition between different input

streams in the form of subtractive weight normalization, which

leads to winner-takes-all dynamics among synapses that do not

allow for the development of extended receptive fields (24, 31,

95). Later models have proposed more intricate plasticity rules,

some of which consider, e.g., voltages or currents, in addition

to pre- and postsynaptic action potentials (25, 28, 96–102), as

summarized in several recent reviews (14, 103–106). In recent

years, there has also been a resurgence of interest in normative

approaches (28, 29, 107). In these approaches, it is postulated

that synaptic plasticity rules act to optimize an objective func-

tion that describes a desirable network property. Motivated by

the notorious instability of recurrent networks, one obvious ob-

jective is stability, e.g., in the form of firing rate homeostasis.

Following early theoretical work that suggested such a home-

ostatic role for synaptic plasticity of inhibitory synapses onto

excitatory neurons(23), two recent studies propose a similar role

for the plasticity of other recurrent synapse types (28, 29). In-

deed, such plasticity rules allow the formation of inhibition bal-

anced receptive fields (28), and stabilize network activity, even

when faced with strong recurrent connections (29). However,

none of these rules have been applied in fully plastic recur-

rent networks with structured feedforward input. Even in com-

plex models that use many different forms of plasticity, some

synapse types are kept static after initialization, to maintain sta-

ble network activity (23, 26, 27, 102). While such networks still

show many interesting dynamics, they lack the rich computa-

tional functions of circuits with structured connectivity between

all neuron types (18, 77). In contrast, our learning rule is mini-
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Figure 5: Cross-orientation and surround suppression in trained neural networks. (A) A plastic recurrent network of excitatory and inhibitory
neurons (top) receives input according to fixed feedforward tuning curves (bottom). Input amplitudes were modulated with stimulus contrast.
Tuning curve of neurons with preferred orientation of 90◦ highlighted in dark gray. (B) Response of 80 excitatory neurons to a test grating (orange,
45◦) and a mask grating (green, 135◦) of different contrast levels (insets, grating contrasts increased for better visibility). Gratings are presented
separately (orange & green) or together (dark blue). Each open circle corresponds to the response of one excitatory neuron. (C) Contrast response
curve of a single excitatory neuron with preferred orientation θ̂ = 45◦ to the test and mask gratings in B. Different mask contrasts are indicated
by different color shades. The bottom/top circles correspond to the left/right contrast level configurations in B. (D) Center (left) and surround
region (right) with different oriented stimuli. (E) Example stimuli during training with different stimulus statistics. Top: Neurons tuned to the same
orientation, but different regions (center region, left; or surround region, right) receive identical input; two example stimuli are shown in solid and
transparent purple, respectively. Bottom: Neurons tuned to the center and surround regions are stimulated separately; two example stimuli are
shown in solid and transparent red, respectively. Either the surround or the center regions are stimulated, while the other region receives zero
input. (F) Recurrent connectivity matrix between excitatory (blue) and inhibitory (red) neurons (cf. Fig. 3D) after training the network with correlated
center and surround stimuli (corresponds to purple color in E, top). Neurons are sorted according to their feedforward orientation tuning. Color
shades indicate tuning to the center (dark) or surround (light) region. (G) Same as in F, but for a network trained with single gratings that were
presented either in the center or the surround region (corresponds to red color in E, bottom). (H) Suppression of excitatory population activity
in response to increasing surround stimulation for two networks trained under different stimulus statistics. Left: network stimulation. Neurons
tuned to the center region are stimulated by an oriented grating of constant, 100% contrast (not shown) while neurons tuned to the surround
region are stimulated with an oriented grating of increasing contrast (shades; compare insets). Identical stimulation protocol for both training
statistics. Center and right: network response. The activity of excitatory neurons that are tuned to the center region is suppressed with increasing
surround contrast. The magnitude of suppression depends on the stimulus statistics during training (purple vs. red, colors as in E). (I) Response
of one excitatory neuron to center and surround stimulation after training. A center stimulus of preferred orientation was presented at constant
contrast while the contrast of a cross- (dashed) or iso-oriented (solid) surround stimulus changed. Colors indicate different stimulus statistics
during training (as in E). (J) Total excitatory (solid) and inhibitory (dotted) input to excitatory neurons during stimulation of only the surround region
with an oriented grating of 90◦. Excitatory input due to feedforward stimulation (ffwd. stim.) is shown in light gray. Colors (top vs. bottom)
indicate different input statistics during training (as in E).

malistic and only relies on general Hebbian synaptic growth that

is stabilized by competitive interactions. Importantly, our theory

does not depend on a specific biophysical implementation of

the Hebbian plasticity paradigm. We only require that synapses
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follow the basic Hebbian principle of synaptic strengthening fol-

lowing concurrent pre- and postsynaptic activity. In the past,

competitive Hebbian learning has been investigated theoreti-

cally for excitatory synaptic inputs to single neurons (30, 31, 39,

108, 109), but not for inhibitory inputs or in recurrent networks.

Our analysis demonstrates that competitive Hebbian plastic-

ity is a suitable learning mechanism for networks of recurrently

connected excitatory and inhibitory neurons, while being ana-

lytically tractable and biologically plausible.

Competitive interactions between synapses have been ob-

served in many different preparations and have been at-

tributed to various mechanisms (110–122). While previous work

has focused on competitive interactions between excitatory

synapses, our results support the notion that similar compet-

itive processes are also active at inhibitory synapses (32, 123).

The local competition for a limited supply of synaptic building

blocks is a biologically plausible normalization mechanism (33,

115, 120, 124, 125). Many synaptic proteins are specific to

inhibitory or excitatory synapses and reside in one synapse-

type, but not the other (126, 127). Therefore, in this work,

we assume a synapse-type-specific competition for different

synaptic resource pools and implement separate normalization

constants for inhibitory and excitatory synapses. On a finer

scale, synapses of different excitatory and inhibitory neuron

subtypes also differ in their protein composition (127–130). In

principle, this allows for the precise regulation of different in-

put pathways via the adjustment of subtype-specific resource

pools (131–137). Furthermore, axons of different neuron sub-

types target spatially separated regions on the dendritic tree,

allowing for pathway-specific local competition. For example,

somatostatin-positive cortical Martinotti cells target the api-

cal dendritic tree of pyramidal cells, while parvalbumin-positive

basket cells form synapses closer to the soma (1), which sug-

gests that afferents of these cell types compete for separate

resources pools. We anticipate such subtype-specific mecha-

nisms to be crucial for the functional development of any net-

work with multiple neuron subtypes (138, 139).

In the brain, total synaptic strengths are dynamic and home-

ostatically regulated on a timescale of hours to days (140–143).

In addition to maintaining average firing rates in response to

network-scale perturbations, a prominent framework puts for-

ward homeostatic scaling of synaptic strengths as a stabiliz-

ing mechanism of Hebbian growth (144). However, theoretical

models suggest that homeostatic scaling is too slow to balance

rapid synaptic plasticity (145). In our networks, Hebbian growth

is instead thought to be stabilized by the competition for a lim-

ited pool of synapse-type-specific resources, while total synap-

tic strengths remain fixed. This competition is fast due to rapid

interactions on a molecular level (33, 120). Compared to Heb-

bian growth, infinitely fast, as a synapse can only grow at the

expense of another. Therefore, we suggest that homeostatic

scaling of total synaptic strengths is not required for immediate

network stability but instead controls the operating regime of

the network (16, 77, 146).

Our results demonstrate how multi-synaptic, inhibitory inter-

actions can decorrelate excitatory neurons. In contrast, in-

hibitory neurons can inhibit each other mono-synaptically and

do not require additional recurrent interactions for decorrela-

tion. Accordingly, we observe that during training, inhibitory

neurons are more decorrelated compared to excitatory neu-

rons (Fig. 3C). These insights complement recent experimen-

tal results that suggest an instrumental role of inhibition in the

decorrelation of excitatory networks in mouse prefrontal cortex

during early development (47). Recent experimental studies in

ferret visual cortex report conflicting evidence—either support-

ing (46) or contradicting (147) aligned developmental trajecto-

ries of excitatory and inhibitory populations. In our simulations,

we observe similar developmental trajectories for excitatory and

inhibitory populations. However, we focused on synaptic plas-

ticity and did not consider other processes, like critical periods

(148, 149), that are known to shape circuit development.

Cortical computations rely on strong recurrent synaptic

weights that result in neural activities that can deviate signifi-

cantly from the input stimulus pattern (15, 16, 18) (cf. Fig. 5B,

left, combined grating response). Such a decoupling of net-

work activity from feedforward input due to recurrent interac-

tions can lead to neural tunings that do not reflect the input stim-

ulus statistics (cf. SM Sec. 3). In our theory (SM Sec. 4), we as-

sume that neurons are tuned to feedforwardmodes and thereby

implicitly assume that network activity is dominated by feedfor-

ward input. In our numerical simulations of fully plastic recur-

rent networks, we find that for intermediate levels of recurrence

(cf. Table 1, Fig. 1, 2 & 3), the network’s activities are indeed

dominated by feedforward inputs. In case of strong recurrence

(Fig. 5), we ensure feedforward dominance by presenting single

oriented gratings that match the fixed feedforward tunings of

neurons (cf. Fig. 5). Such gratings elicit a Gaussian-shaped re-

sponse that is sharpened due to the recurrent connectivity, but

maintains the general correlation structure compared to purely

feedforward-driven networks (compare tuning widths in Fig. 5A,

bottom, and B, single grating response). Biological cortical net-

works are strongly recurrently connected (150–154). However,

neural activity and the induction and polarity of synaptic plas-

ticity are regulated by neuromodulators (155–159), which may

control the destabilizing effect of strong recurrent connectiv-

ity. In addition, different synapse types do not develop simul-

taneously but progress through different developmental stages

(138, 160, 161). For example, the development of recurrent ex-

citatory connections is delayed compared to that of feedfor-

ward synapses (132, 162). Taking these factors into account

will be essential for future models of developing recurrent cir-

cuits.

In our networks, structured feedforward input is crucial for

the development of orientation selective receptive fields. How-

ever, already at the time before eye opening cortical neurons

exhibit substantial selectivity for stimulus orientation, without

having been exposed to the statistical regularities of visual in-

puts (163–165). One hypothesis is that, instead, spontaneous

activity in the retina provides the statistical structure required

for the initial development of orientation selectivity (166–168).

In our model, circuit formation depends only on the statistical

regularities between input streams and is agnostic with respect

to their origin. Therefore, we expect our approach to extend be-

yond sensory cortices and to provide a fundamental framework

for plasticity in recurrent neural networks.

Materials and Methods

Computational model. We consider networks of rate coding exci-
tatory (E) and inhibitory (I) neurons that receive input from themselves
and a population of feedforward input neurons (F). Membrane potential
vectors u evolve according to

τA ¤uA = −uA +WAF rF +WAErE −WAIrI, A ∈ {E, I}, [9]

where τA is the activity timescale. WAB are matrices that hold synap-
tic weights between the presynaptic population B and the postsynaptic
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population A with B ∈ {E, I, F }. All differential equations were numer-
ically integrated using the Euler method in timesteps of ∆t. Entries of
weight matrices were drawn from a normal distribution with mean µW
equal to two times the standard deviation σW , which yields mainly pos-
itive entries. Negative entries were set to their absolute value. Before
the start of the simulation, excitatory and inhibitory weights were nor-
malized as described below. Unless stated otherwise, prior to normal-
ization, all recurrent excitatory weights were set to zero, i.e., initially
networks were dominated by feedforward input. Firing rate vectors rA
are given as a function f (uA ) of the membrane potential uA:

rA = f (uA ), f (uA ) = a[uA − b]n+, A ∈ {E, I} [10]

with [ · ]+ = max(0, · ) and scalar constants a, b, and n.

Plasticity and normalization. Plastic weights evolve according to
a Hebbian plasticity rule

¤WAB = εABrArB
ᵀ
, A ∈ {E, I}, B ∈ {E, I, F } [11]

where εAB is a scalar learning rate, and
ᵀ
indicates the transpose. After

each plasticity step, synaptic weights are normalized such that the total
excitatory and inhibitory postsynaptic weights are maintained:

w
(ij)
AB
←WAE

w
(ij)
AB∑

j w
(ij)
AE
+∑

k w
(ik)
AF

, [12]

w
(ij)
AI
←WAI

w
(ij)
AI∑

j w
(ij)
AI

, A ∈ {E, I}, B ∈ {E, F }, [13]

where WAE ,WAI are the total excitatory and inhibitory synaptic weight
norms. Weights are updated and normalized in every integration
timestep ∆t, in sync with the network dynamics.

In Fig. 1, we set the activity of the inhibitory input neurons equal to
the activity of the excitatory input neurons, i.e., rI = rF . For panels H & I
of Fig. 1, inhibitory weights evolved according to the classic inhibitory
plasticity rule (23) without normalization:

¤wEI = εEI (rE − r0 )rI, [14]

where r0 is a target firing rate.

Input model. The activity of feedforward input neurons depends on
the orientation θ and contrast c of an input grating:

rF = cAF exp

(
− |θ, θF |

2

2σ2
F

)
, [15]

where the vector θF holds the preferred orientations of the input neu-
rons that are evenly distributed between 0 and 180◦, σF is the tuning
width, AF the maximum firing rate, and | ·, · | is the angular distance ,
i.e., the shortest distance around a circle of circumference 180◦. During
training, single gratings, sampled from a uniform distribution between
0◦ and 180◦, were presented to the network for 200ms, before the next
stimulus was selected.

In Fig. 5 network stimulation is realized via static feedforward
weights. Neuron were assigned a preferred orientation θ̂, evenly dis-
tributed between 0◦ and 180◦. Static feedforward weights were initial-
ized as

WAF = exp
©«−

��θ̂, θF ��2
2σ2

θ

ª®¬. [16]

For Fig. 5, feedforward weights are normalized separately to WAF be-
fore the start of the simulations (cf. Table 1). In this case, feedforward
weights are fixed and are not taken into account when normalizing re-
current weights. Feedforward weights of static neurons in Fig. 2A & B
are processed in the same fashion. For Fig. 5, parameters were se-
lected to result in stimulation patterns as in Rubin et al. (18). Weight
norms WAB were also adapted from Rubin et al. (18). See Table 1 for
an overview of used simulation parameters.

Tuning curve uniformity measure. In Fig. 3C, we quantified the
uniformity of the distribution of tuning curves during learning and de-
fined:

pA
j
=

∑
i

w
(ij)
AF
/
∑
ij

w
(ij)
AF
, A ∈ {E, I}, [17]

where pA
j
is the normalized total synaptic output weight of input neu-

ron j onto the excitatory (E) and inhibitory (I) neural population. Then∑
j p

A
j
= 1, and we can define the tuning uniformity UA as the normal-

ized Shannon entropy H
pA
.

UA = H
pA
/log(NF ) = −

∑
j

pA
j
log(pA

j
)/log(NF ), A ∈ {E, I} . [18]

UA is maximal, equal to one, if pA is uniformly distributed, and minimal,
equal to zero, if all synaptic weight is concentrated in a single input
neuron. Such a concentration is highly unlikely. In our simulations,
weight distributions are much closer to a uniform distribution, and the
uniformity measure is close to one.
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1 Linear competitive Hebbian learning finds principal components

Before considering inhibitory plasticity, we recapitulate how linear Hebbian learning finds the principal eigenvector

of a neuron’s inputs. Although first described by Oja (1), we will mostly follow the derivation by Miller and MacKay

(2) that we will later extend to inhibitory neurons.

1.1 Hebbian plasticity without normalization is unstable

We consider a single neuron that receives input from a set of excitatory neurons (Fig. S1A). Its output firing rate r is

a weighted sum of the firing rates of its pre-synaptic inputs y. One can conveniently write this as a dot product:

τr ¤r = −r +
∑
i

wiyi = −r +wᵀy, [1]

where w is a vector that holds the synaptic weights, and τr defines the timescale at which the activity changes. In

the following, lowercase letters in bold indicate vectors, and uppercase letters in bold matrices. Following Hebb’s

principle, synaptic weight changes depend on the pre- and post-synaptic firing rates. In vector notation:

τ ¤w = yr [2]

where the constant τ sets the timescale of plasticity. Assuming that synaptic weights change on a much slower

timescale than firing rates, τr � τ, we make the simplifying assumption that r reaches its fixed point instantaneously,

i.e., τr � 1 and r = w
ᵀ
y, and consider the same plasticity timescale for all synapses τ = 1. Then, the average change

of the synaptic weights can be expressed as a linear transformation of the original weight vector:

〈 ¤w〉 = 〈yr〉 = 〈yyTw〉 = Cw, C ≡ 〈yyᵀ〉, [3]

where 〈·〉 is a temporal average and C is the covariance matrix of the synaptic inputs y, assuming inputs have

zero mean, 〈y〉 = 0. In the following, we only consider the average weight changes and omit the angled notation

for convenience. To solve this differential equation, we express the weight change in the eigenvector basis of the

covariance matrix C, which is symmetric and positive-semidefinite and, therefore, has a complete set of orthonormal

eigenvectors with non-negative eigenvalues.

¤wv ≡V−1 ¤w = V
ᵀ
CVV

ᵀ
w = Λwv, [4]

⇒ wv = exp(Λt)wv (t0). [5]

Here, Λ is the diagonal eigenvalue matrix, and each column of V holds mutually orthogonal eigenvectors, i.e.,

VV
ᵀ

= 1, and V−1 = V
ᵀ
. Each eigenvector component grows exponentially at a rate given by the respective eigen-

value, which we identify with the attraction of the input component. We call eigenvector components with positive

eigenvalue attractive, and the eigenvector component with the largest eigenvalue the most attractive input mode.

We will later see that eigenvalues that describe the dynamics of input modes can become negative (Sec. 2). We will

call such input modes with negative corresponding eigenvalue repulsive.

In summary, we find that unconstrained Hebbian plasticity results in the unlimited growth of synaptic weights

and is therefore unstable. One way to constrain this unlimited growth is to modify the Hebbian learning rule such

that the total synaptic weight is maintained.

A B C

Figure S1: (A) Feedforward excitatory circuit. A post-synaptic neuron with output firing rate r receives synapsesw from a set of excitatory neurons

with firing rates yE . (B) The normalization operation constrains synaptic weight changes ¤w to a hyperplane that is perpendicular to the constraint

vector c by subtracting a multiple γ of the weight vector w. See text for details. Figure adapted from Miller and MacKay (2). (C) Feedforward

inhibitory circuit. A post-synaptic neuron with output firing rate r receives excitatory synapses wE from a population of NE excitatory neurons

with firing rates yE , and inhibitory synapses wI from a population of NI inhibitory neurons with firing rates yI. The gray horizontal line indicates

the separation between two hypothetical brain regions or cortical layers.
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1.2 Weight constraints stabilize unlimited Hebbian growth

Hebbian plasticity and weight normalization can be considered as two discrete steps. First, growing weights ac-

cording to the Hebbian rule. Second, normalizing to maintain the total synaptic weight. In this section, we will follow

Miller and MacKay (2) and show how one can integrate these two discrete steps into one and derive the effective

weight change ¤w. One can write the two steps as

w̃ = w(t) + Cw∆t, w(t + ∆t) = W

c
ᵀ
w̃
w̃, W ≡ cᵀw(t), [6]

This update rule maintains the projection of w onto the constraint vector c by multiplicatively scaling the weight

vector after the Hebbian learning step, i.e., w̃. Alternatively, if we let W be a constant (cf. Eq. 6), the projection

onto c would be constrained to be equal to that constant. In the following, we instead assume that the weights are

already properly normalized and set the projection value as it was before the plasticity timestep, i.e., equal to W as

defined above.

w(t + ∆t) = β [w(t) + Cw(t)∆t], β (w(t),∆t) = c
ᵀ
w(t)

c
ᵀ [Cw(t)∆t +w(t)]

, [7]

where β describes the multiplicative normalization that depends on the size of the timestep ∆t and the previous

weight w(t). It is straightforward to check that the projection of the weight vector onto the constraint vector c does

not change, i.e.,

c
ᵀ
w(t + ∆t) = cᵀw(t). [8]

Then, the effective weight change ¤w is given as

¤w = lim
∆t→0

w(t + ∆t) −w(t)
∆t

= lim
∆t→0

[
β − 1

∆t
w(t) + βCw(t)

]
[9]

= lim
∆t→0

[
β − 1

∆t
w(t) + βCw(t) + Cw(t) − Cw(t)

]
[10]

= lim
∆t→0

[
Cw(t) − 1 − β

∆t
[w(t) + Cw(t)∆t]

]
[11]

= lim
∆t→0

[
Cw(t) − 1 − β

β∆t
w(t + ∆t)

]
, [12]

where, in the first and last steps, we used the definition of w(t + ∆t) in Eq. 7. Next, we take the limit

lim
∆t→0

1 − β

β∆t
= lim

∆t→0

1

∆t

(
1

β
− 1

)
[13]

= lim
∆t→0

1

∆t

(
c
ᵀ [Cw∆t +w]

c
ᵀ
w

− 1

)
[14]

= lim
∆t→0

c
ᵀ
Cw

c
ᵀ
w

+ c
ᵀ
w

c
ᵀ
w∆t

− 1

∆t
=
c
ᵀ
Cw

c
ᵀ
w
. [15]

In summary, we get (cf. Fig. S1B):

⇒ ¤w = Cw − γw, γ ≡ c
ᵀ
Cw

c
ᵀ
w
. [16]

Here, γ is a scalar normalization factor that depends on the current weight w.

An alternative way to derive ¤w is to guess the shape of the multiplicative normalization term in Eq. 16 and require

that the change along the constraint vector is zero1, i.e.,

d

dt

(
c
ᵀ
w

)
= c

ᵀ ¤w = c
ᵀ
Cw − γc

ᵀ
w

!
= 0, ⇒ γ =

c
ᵀ
Cw

c
ᵀ
w
, [17]

Note that for c being a constant vector of ones, the L1-norm of the weight vector is maintained. However, c does not

have to be constant. For example, for c = w the L2-norm is maintained. Also, note that one can analogously derive

effective plasticity rules when weights are constrained via subtractive normalization with the ansatz ¤w = Cw − ζk,
where k is a vector of ones (2).

1We indicate an equality or condition that we want to be fulfilled with an exclamation point over the equal sign.
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1.2.1 Fixed points

From Eq. 16 it is clear that multiples of eigenvectors v of C are fixed points, for which ¤w∗ = 0. Explicitly, for a scalar

constant a and w∗ = av one gets:

¤w∗ = aCv − c
ᵀ
Cv

c
ᵀ
v

av = aλv − c
ᵀ
λv

c
ᵀ
v
av = 0. [18]

Note that this is independent of the choice of the constraint vector c. We next consider the stability of these eigen-

vector fixed points.

1.2.2 Stability analysis

In the previous sections, we showed how multiplicative normalization constrains the norm of the weight vector and

therefore prevents the otherwise unlimited growth of Hebbian plasticity. However, even when the total synaptic

weight is constrained, synaptic weights might still be unstable and never settle into a fixed point, e.g., experiencing

oscillatory dynamics and unstable fixed points. Following Miller and MacKay (2), we will now explore under what

conditions fixed points are stable.

Formally, a fixed point in a linear system is stable when the largest eigenvalue of the Jacobian is negative, or

marginally stable when it is equal to zero (3). The weight dynamics around a fixed point w∗ can be approximated

with its Taylor expansion:

¤w ≈ ¤w∗ +
∑
i

d ¤w
dwi

����
∗
(wi −w∗

i ), [19]

=
d ¤w
dw

����
∗
(w −w∗), [20]

= J∗ (w −w∗), [21]

where ¤w∗ is zero, by definition, and J∗ is the Jacobian evaluated at the fixed point. The Jacobian is defined as

J∗ ≡

©«

d ¤w1

dw1

���
∗
... d ¤w1

dwN

���
∗

...
...

d ¤wN

dw1

���
∗
... d ¤wN

dwN

���
∗

ª®®®®®®®¬
≡ d ¤w

dw

����
∗
. [22]

A fixed point is stable if small perturbations away from the fixed point, ∆w = w −w∗, decay to zero, i.e.,

d

dt
∆w = ¤w − ¤w∗ = ¤w ≈ J∗∆w, [23]

where we approximated ¤w with its Taylor expansion (Eq. 19), since the perturbation is small, i.e., w is close to the

fixed point. The result is a linear differential equation that one can solve as

∆w(t) = exp
(
J∗t

)
∆w(t0), [24]

where all vector components decay to zero if all eigenvalues of J∗ are negative1,2. As we will see later, it is useful to
rewrite the weight dynamics (Eq. 16) as

¤w = Cw −wγ, [25]

= Cw − wc
ᵀ
Cw

c
ᵀ
w
, [26]

=

[
1 − wc

ᵀ

c
ᵀ
w

]
Cw. [27]

1This can be seen by formulating the system in the eigenbasis of J∗. Then, the matrix exponential becomes: V−1 exp
(
J∗t

)
V = exp(ΛJt), where

V holds eigenvectors and ΛJ is a diagonal matrix that holds the eigenvalues of J∗.
2In general, the real part of the eigenvalues of the Jacobian have to be negative for a fixed point to be stable. However, since C is a covariance

matrix, it is positive definite with positive, real eigenvalues. We will see (Eq. 32) that from this it follows that the eigenvalues of the Jacobian are

also real.
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It follows1:

d ¤w
dw

����
∗
=

[
1 − v∗c

ᵀ

c
ᵀ
v∗

]
C +

[
− 1c

ᵀ

c
ᵀ
v∗

+ v∗c
ᵀ
c
ᵀ

(cᵀv∗)2

]
Cv∗, [28]

=

[
1 − v∗c

ᵀ

c
ᵀ
v∗

]
[C − λ∗1] , [29]

where w
��
∗ = w∗ = av∗ is the fixed point with v∗ being an eigenvector of C. The scalar a is the length of the fixed

point weight vectorw∗ (which cancels) and λ∗ is the eigenvalue to v∗. To find the eigenvalues of the Jacobian, λJ, we
diagonalize J by switching to the eigenbasis of C. When V is the matrix that holds the eigenvectors of C as columns

one gets

V
ᵀ d ¤w

dw

����
∗
V =

[
1 − Vᵀ v

∗c
ᵀ

c
ᵀ
v∗
V

] [
V
ᵀ
CV − λ∗1

]
, [30]

=

[
1 − e∗ c

ᵀ
V

c
ᵀ
v∗

]
[Λ − λ∗1] , [31]

where Λ is a diagonal matrix that holds the eigenvalues of C. Without loss of generality, we can assume that the

first column of V is equal to v∗. Then e∗ = V
ᵀ
v∗ is a column vector of zeros, except for the first entry, which is equal

to one. Then, the first bracket becomes an upper triangular matrix with ones on the diagonal, except for the first

diagonal entry, which is zero. From this, it follows2 that the eigenvalues of the Jacobian are

λJ = λ − λ∗. [32]

If λ∗ is the largest eigenvalue, i.e., w∗ is a multiple of the principal eigenvector of C, then all λJ are negative or zero,
and the fixed point is marginally stable. If there exists a λ > λ∗, the corresponding λJ is positive and the fixed point

is unstable. Therefore, the eigenvector corresponding to the principal eigenvalue is the only (marginally) stable fixed

point. In summary, linear Hebbian learning combined with multiplicative normalization becomes selective for the

principal eigenvector of the input covariance matrix and thus performs principal component analysis (PCA). Next,

we consider what happens when a neuron also receives inhibitory input.

1.2.3 Classic Inhibitory plasticity prevents stimulus selectivity

Previous work suggested a homeostatic inhibitory synaptic plasticity rule (4) that enforced a post-synaptic target

firing rate r0:

¤wI ∝ yI (r − r0) . [33]

However, when combined with excitatory plasticity, this classic rule prevents the development of stimulus selectivity

(cf. Fig. 1A, E & F). For completeness, we briefly recapitulate this result, presented in Clopath et al.(5): We consider

a simplified circuit of a single post-synaptic neuron with firing rate r that receives lateral input from NI inhibitory

neurons, while all neurons receive feedforward input from a population of NE excitatory neurons3 (cf. Fig. S1C).

Then, yE and yI are vectors that hold the firing rates of the excitatory and inhibitory populations. We now explore the

self-organization of excitatory and inhibitory synaptic weights, wE and wI, that project onto the single post-synaptic

neuron, while input synapsesQ that project onto inhibitory neurons remain fixed. In Clopath et al. (5), the authors find

that classic inhibitory plasticity is required to act faster than excitatory plasticity to enable stable weight dynamics (5).

For much faster inhibitory plasticity, the dynamics of excitatory and inhibitory weights decouples, and fixed points of

the inhibitory weights w∗
I
can be considered separately from the fixed points of excitatory weights. When excitatory

and inhibitory inputs are equally stimulus selective, the fast dynamics of inhibitory weights ensures that the target

firing rate is consistently met, r∗ ≈ r0, and plasticity of excitatory synapses only depend on pre-synaptic terms and

constants4:

〈 ¤w∗
I 〉 = 0 ⇒ 〈 ¤wE〉 ∝ 〈yE〉r0 − normalization. [34]

1To make sense of the vector notation, it helps to first consider the b’th column of d ¤w
dw

which is equal to d ¤w
dwb

, where wb is the b’th vector

component of w.
2Because the eigenvalues of a product of two triangular matrices is equal to the product of their eigenvalues.
3Note that NI does not necessarily equal NE .
4More precisely, we assume that excitatory and inhibitory inputs are similarly tuned, i.e., yE = Q−1yI. From 〈 ¤wI 〉 = 0 we get 〈yIr 〉 = 〈yI 〉r0,

which after multiplying by Q−1 becomes 〈Q−1yIr 〉 = 〈Q−1yI 〉r0. Then, for excitatory plasticity one gets 〈 ¤wE 〉 = 〈Q−1yIr 〉 − normalization =
〈yE 〉r0 − normalization, as stated in Eq. 34.
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When all pre-synaptic neurons have similar average firing rates, 〈yE〉i ≈ y0, and weights change on a slower timescale

than activities, as is the case biologically, the average excitatory synaptic weight change becomes

〈 ¤wE〉 ∝ cy0r0 − normalization, [35]

where c is a vector of ones. The average synaptic weight change is identical across synapses, which prevents the

development of stimulus selectivity (Fig. 1E & F). Therefore, classic inhibitory plasticity that enforces a target firing

rate cannot explain the joint development of stimulus selectivity and inhibitory balance. Instead, we propose that,

as excitatory weights, also inhibitory weights are constrained via a competitive process that normalizes the total

inhibitory input that a neuron receives.

2 Synapse-type-specific normalization balances E-I receptive fields

Different from the normalization of excitatory weights, the normalization of inhibitory weights is not motivated by the

requirement for stability. Inhibitory synaptic plasticity that depends on neural activity is self-limiting, since increasing

inhibitory weights eventually prevent the neuron from firing, and thus prevent further plasticity. Instead, we moti-

vate the normalization of inhibitory synaptic weights by the competition for a limited amount of synaptic building

blocks that may also drive excitatory normalization (see Main text for details). In the following, we generalize the ap-

proach outlined in the previous Sections for excitatory weight normalization to the case of simultaneous excitatory

and inhibitory normalization. We consider the same circuit architecture as in Section 1.2.3 (cf. Fig. S1C) with rate

dynamics

τr ¤r = −r + yE
ᵀ
wE−yI

ᵀ
wI
ᵀ
= −r + yᵀ

(
1 0

0 −1

)
w, [36]

w =

(
wE

wI

)
, y =

(
yE

yI

)
, yI = QyE, [37]

where 1 is the unit matrix with appropriate dimension, 0 are matrices of zeros and appropriate dimensionality, and

we defined the modified weight and input vectors, w and y. Similar to before, we assume fast activity dynamics,

τr � 1, and write the Hebbian part of the time-averaged weight dynamics as

τ
〈 ¤w〉

= 〈yr〉 =
〈
yy
ᵀ〉 (

1 0

0 −1

)
w, [38]

=

〈(
yEyE

ᵀ −yEyI
ᵀ

yIyE
ᵀ −yIyI

ᵀ

)〉
w ≡ Cw, [39]

where we defined the modified covariance matrix C. In general, we assume that all synapses of one type, excitatory

or inhibitory, change equally fast (cf. Table 1). Then, the matrix τ holds the timescales of excitatory plasticity,

τE = 1τE , and inhibitory plasticity, τI = 1τI, as matrices on the diagonal, and is zero otherwise. In the following,

we drop the bracket notation 〈·〉 for better readability. As in the case of only excitatory input, we can implement

multiplicative normalization by additional constraint terms. Now also for inhibitory weights (cf. Eq. 16):

τ ¤w = Cw − γwE − ρwI , [40]

wE =

(
wE

0

)
, wI =

(
0

wI

)
, [41]

where 0 indicates vectors of zeros of appropriate dimension (NI and NE ) that we do not specify for better readability.

The constraint factors γ and ρ follow from the requirement that the weight vector does not grow along the direction

of the constraint vectors cE and cI. Here we choose them such that the sums over the excitatory and inhibitory
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weights remain constant, i.e., the L1-norm of the excitatory and inhibitory part of the weight vector is maintained1.

cE
ᵀ ¤w !

= 0, cI
ᵀ ¤w !

= 0, [42]

cE
ᵀ ≡

(
1, ... , 1, 0, ... , 0

)
, cI

ᵀ ≡
(
0, ... , 0, 1, ... , 1

)
, [43]

where the number of non-zero entries in cE and cI is equal to the number of excitatory NE and inhibitory neurons NI,

respectively. Based on these requirements we derive expressions for the scalar constraint factors γ and ρ:

⇒ γ =
cE

ᵀ
Cw

cE
ᵀ
wE

, ρ =
cI
ᵀ
Cw

cI
ᵀ
wI

. [44]

Finally, we can write the weight dynamics as

⇒ τ ¤w =

[
1 − wEcE

ᵀ

cE
ᵀ
wE

− wIcI
ᵀ

cI
ᵀ
wI

]
Cw . [45]

2.1 Fixed points

For the fixed points we have to find weight vectors w∗ for which the time derivative ¤w∗
is equal to zero:

τ ¤w∗
= Cw∗ − γw∗

E − ρw∗
I [46]

= Cw∗ − cE
ᵀ
Cw∗

cE
ᵀ
w∗

E

w∗
E − cI

ᵀ
Cw∗

cI
ᵀ
w∗

I

w∗
I

!
= 0, [47]

which is equivalent to

Cw∗ !
= λEw

∗
E + λIw

∗
I , [48]

for λE and λI being arbitrary scalar.

2.1.1 Eigenvectors of the modified covariance matrix are fixed points

It is straightforward to check that multiples of eigenvectors v of the modified covariance matrix C with eigenvalue λ
are fixed points:

Cv = λvE + λvI = λEvE + λIvI ⇒ λE = λI = λ. [49]

In the following, we will refer to eigenvectors of the modified covariance matrix as fixed point eigenvectors, and

to eigenvectors of the feedforward excitatory covariance matrix C as feedforward eigenvectors. Next, we will try

to specify the eigenvectors of C. In general, eigenvectors of C depend non-trivially on the tuning of the laterally

projecting population (cf. Sec. 3, Eq. 121). However, the problem simplifies when the laterally projecting inhibitory

neurons are tuned to multiples of eigenvectors of the excitatory population’s covariance matrix. This is what one

would expect when the post-synaptic excitatory neuron r and the inhibitory population yE both receive excitatory

input from the same external brain region yE and synapses from the external population onto inhibitory neurons

are plastic according to a Hebbian rule with multiplicative normalization (cf. Fig. S1C). Although we showed in

Section 1.2.2 that without recurrent interactions only the principal eigenvector is a stable fixed point, we will find that

with suitable recurrent interactions any feedforward eigenvector can be stable (cf. Sec. 3 & 5.2.3). Formally we set

yI = QyE = A
ᵀ
V
ᵀ
yE, [50]

where each row of Q = A
ᵀ
V
ᵀ
is the feedforward weight vector of an inhibitory neuron which is equal to a positive

multiple, a, of an eigenvector v of the excitatory covariance matrix C = 〈yEyE
ᵀ〉. Then V holds all eigenvectors as

columns, and A is a matrix where each multiple is the only non-zero element per column, such that AA
ᵀ
is a diagonal

matrix. We will now show that in this scenario multiples of the excitatory and inhibitory part of the eigenvectors of

the modified covariance matrix C are fixed points. As a first step, we explicitly calculate the eigenvectors.

1The choice of the L1-norm is motivated by the synaptic competition for a fixed amount of resources, where, in the simplest case, each unit

of resource linearly increases synaptic strengths. Higher-order L-norms do not affect the learning of feedforward receptive fields. However, in

recurrent networks, they can lead to instabilities (cf. Sec. 4.3).
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2.1.2 Eigenvectors and eigenvalues of the modified covariance matrix

In the previous section, we have seen that eigenvectors v of the modified covariance matrixC are fixed points. In this

section, we will find an explicit expression for these eigenvectors when inhibitory neurons are tuned to feedforward

eigenvectors, i.e., inhibitory neurons are tuned to eigenvectors v of the excitatory covariance matrix C. Making use

of Eq. 50 the modified covariance matrix becomes

C =

〈©«
yEyE

ᵀ −yEyI
ᵀ

yIyE
ᵀ −yIyI

ᵀ
ª®¬
〉
=

©«
C −CVA

A
ᵀ
V
ᵀ
C −AᵀVᵀCVA

ª®¬ =
©«

C −VΛA

A
ᵀ
ΛV

ᵀ −AᵀΛA
ª®¬. [51]

Then, a full set1 of linearly independent eigenvectors V and their inverse V−1 is given as2.

V =
©«
V VA

A
ᵀ

1

ª®¬, V−1 =
©«
(1 − AAᵀ)−1 0

0 (1 − AᵀA)−1
ª®¬©«

V
ᵀ −A

−AᵀVᵀ 1

ª®¬, [52]

where each column of V is an non-normalized eigenvector. The eigenvalue spectrum is

CV
!
= VΛ ⇒ Λ =

(
Λ(1 − AAᵀ) 0

0 0

)
. [53]

Similar to before, we call eigenvectors of the modified covariance matrix with positive eigenvalue attractive. Differ-

ent from the case of only excitatory feedforward input, eigenvalues of the modified covariance matrix can also be

negative. In this case, we call the corresponding eigenvector repulsive (cf. Sec. 1.1).

For eigenvectors in the right matrix column of V in Eq. 52, the excitatory and inhibitory components of the mem-

brane potential exactly cancel, post-synaptic firing rates are zero, and no plasticity is induced: For multiple post-

synaptic neurons with firing rates r, where each neuron is tuned to one of these eigenvectors, one gets

r = y
ᵀ

(
1 0

0 −1

)
V ◦, V ◦ =

(
VA

1

)
, y =

(
yE

yI

)
, yI = A

ᵀ
V
ᵀ
yE, [54]

⇒ r =
(
yE
ᵀ
,−yE

ᵀ
VA

) (VA
1

)
= 0. [55]

Since these eigenvectors result in post-synaptic firing rates of zero, and they define the null space of the C matrix

(Eq. 53), we call them ‘null eigenvectors’ or ‘null fixed points’, and all eigenvectors that are not null eigenvectors

‘regular’ eigenvectors or fixed points. Note that for each additional inhibitory neuron that is tuned to a feedforward

eigenvector, there is an additional null eigenvector, since inhibitory synaptic weights can now shift between the orig-

inal, and the additional inhibitory neuron to cancel post-synaptic firing. Overall, there are always NI null eigenvectors

andNE regular eigenvectors
3. Note thatA is a matrix with exactly one non-zero element per column (cf. Eq. 50f.), and

we can see from Eq. 52 that the excitatory part of each null eigenvector is proportional to the excitatory part of one

regular eigenvector. In the following, when we speak of regular eigenvectors and corresponding null eigenvectors,

we mean eigenvectors with proportional excitatory components.

We have already shown in Section 2.1.1 that eigenvectors of C are fixed points. Each eigenvector specifies an

exact ratio between the excitatory and inhibitory weight norm. Since our learning rule separately maintains the total

excitatory and inhibitory synaptic weights, reaching any of these fixed points would require detailed fine-tuning at

the point of initialization. In the next section, we show a more general set of fixed points that does not require any

fine tuning of weight norms.

2.1.3 Non-eigenvector fixed points

In this section, we show that there exist fixed points that are not eigenvectors of the modified covariance matrix. In

particular, arbitrary multiples of the excitatory and inhibitory parts of regular eigenvectors, i.e., of eigenvectors that

1Note that A and VA are of dimension NE × NI, and V is of dimension (NE + NI ) × (NE + NI ).
2To show that V−1 is the inverse of V it is useful to define the Moore-Penrose inverse A−1 = A

ᵀ (AAᵀ )−1 and note that A
ᵀ (1 − AA

ᵀ )−1 =
(1 − AᵀA)−1Aᵀ.

3Similarly, each additional laterally projecting excitatory neuron adds another null eigenvector. In that case, the lateral excitatory weight

component and the feedforward excitatory weight component have opposite signs such that they cancel each other (cf. Sec. 5.1).
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result in non-zero post-synaptic activity, are fixed points. We make the ansatz that the matrixW∗ holds fixed points

as columns and has the shape

W∗ =

(
VKE

A
ᵀ
KI

)
, [56]

where KE and KI and are diagonal scaling matrices of arbitrary constants. The fixed point condition that follows from

Eq. 48 is

CW∗ !
=

(
W∗

EΛE

W∗
I ΛI

)
. [57]

We now show that for any KE , KI we can find diagonal matrices ΛE , ΛI that fulfil this condition
1. We write explicitly

⇒ CW∗ =

(
C −VΛA

A
ᵀ
ΛV

ᵀ −AᵀΛA

) (
VKE

A
ᵀ
KI

)
!
=

(
VKEΛE

A
ᵀ
KIΛI

)
[58]

CVKE − VΛAAᵀKI
!
= VKEΛE, [59]

A
ᵀ
ΛV

ᵀ
VKE − AᵀΛAAᵀKI

!
= A

ᵀ
KIΛI . [60]

VKEΛ − VKIAA
ᵀ
Λ

!
= VKEΛE, [61]

A
ᵀ
KEΛ − AᵀKIΛAA

ᵀ !
= A

ᵀ
KIΛI, [62]

where we made use of the fact that independent of their subscript, the K, Λ, and AA
ᵀ
matrices are diagonal and

commute. By comparing the left and right sides of the equations, we find

ΛE = Λ
(
1 − K−1

E KIAA
ᵀ)
, [63]

ΛI = Λ
(
K−1
I KE − AAᵀ

)
, [64]

which are diagonal matrices, as required2. Before we consider the stability of these fixed points in Section 2.2, we

first show that there is an additional set of fixed points.

2.1.4 General fixed points

Having covered various special cases of fixed points for the dynamics, we now consider the general problem. Recall

that fixed points are defined to satisfy Equation 48:

Cw∗ = λEw
∗
E + λIw

∗
I [65]

Expanding this using our expression for C (Eq. 51), we can see that this is equivalent to:

VΛV
ᵀ
w∗

E − VΛAw∗
I = λEw

∗
E, [66]

A
ᵀ
ΛV

ᵀ
w∗

E − AᵀΛAw∗
I = λIw

∗
I , [67]

and equivalently

Λ(Vᵀw∗
E − Aw∗

I ) = λEV
ᵀ
w∗

E, [68]

A
ᵀ
Λ(Vᵀw∗

E − Aw∗
I ) = λIw

∗
I . [69]

Inserting the first into the second expression, we can conclude that

λEA
ᵀ
V
ᵀ
w∗

E = λIw
∗
I . [70]

1For KE = 1 and KI = (AAᵀ )−1 columns ofW∗ holds null eigenvectors that can be formed by a linear combination of null eigenvectors V◦ given
in Eq. 54.

2In general, this is not the case for null eigenvectors. Following the same formalism for null eigenvectorsW∗ᵀ = (KE
ᵀ
A
ᵀ
V
ᵀ
,KI

ᵀ )ᵀ one finds the

condition that A
ᵀ
ΛA must be diagonal. In general, this is not the case, e.g., when multiple inhibitory neurons are tuned to the same eigenvector,

i.e., when multiple columns of A hold the same vector up to a constant factor.
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If λE = λI , 0, thenwe know thatw∗ is an eigenvector of themodified covariancematrix, as discussed in Section 2.1.1.

In the case that λE = λI = 0, we have the null eigenvectors discussed in Section 2.1.2. We therefore now address

the case that λE , λI.
We begin with the case λI , 0. Then we can insert Eq. 70 into Eq. 68 to arrive at

Λ

(
1 − λE

λI
AA

ᵀ
)
V
ᵀ
w∗

E = λEV
ᵀ
w∗

E, [71]

which, together with Eq. 70, gives necessary and sufficient conditions for a fixed point. From Eq. 71, we conclude

that V
ᵀ
w∗

E
is an eigenvector of the diagonal matrix Λ

(
1 − λE

λI
AA

ᵀ)
with eigenvalue λE . When V

ᵀ
w∗

E
is one-hot, then

the vector w∗ consists of an arbitrary multiple of the excitatory and inhibitory parts of a regular eigenvector, as

covered in Section 2.1.3.

We now turn our attention to the case where V
ᵀ
w∗

E
is not simply one-hot. We can now say that for each compo-

nent j of V
ᵀ
w∗

E
which is non-zero, the following equation must hold:

λj

(
1 − λE

λI
(AAᵀ)jj

)
= λE . [72]

This is a linear system in the pair of variables λE and λE/λI. We work under the mild assumptions that the eigenvalues

λj, the diagonal elements (AAᵀ)jj, and their product λj (AA
ᵀ)jj are distinct for each j. These conditions will in general

hold in the absence of fine tuning. In this case, λE and λI provide two degrees of freedom and there will only be

solutions when V
ᵀ
w∗

E
is (at most) two-hot, having non-zero components, j and k. Such solutions satisfy:(

λj

λk

)
=

(
λj (AA

ᵀ)jj 1

λk (AA
ᵀ)kk 1

) (
λE/λI
λE

)
, [73]

which we can solve to obtain the expressions:

λE = λjλk
(AAᵀ)jj − (AAᵀ)kk

λj (AAᵀ)jj − λk (AAᵀ)kk
, λI = λjλk

(AAᵀ)jj − (AAᵀ)kk
λj − λk

. [74]

The components of the two-hot solution are determined by the known initial values of kE = cE
ᵀ
wE and kI = cI

ᵀ
wI,

which are kept constant throughout training 1. Although two-hot fixed points do not require fine tuning of excitatory

and inhibitory weight norms, we did not observe them in any of our numerical simulations and therefore assume they

are unstable.

The final case to be considered is when λI = 0, λE , 0. In this situation, Eq. 70 tells us that V
ᵀ
w∗

E
is in the kernel

of A
ᵀ
and therefore in the kernel of the diagonal matrix AA

ᵀ2. By using Eq. 68, we can therefore conclude that

AA
ᵀ
Λ(Vᵀw∗

E − Aw∗
I ) = 0. [75]

We work under the assumption that, in the absence of fine tuning, Λ has distinct non-zero eigenvalues. In this case,

the first term in Equation 75 is zero, and Aw∗
I
must also be in the kernel of AA

ᵀ
and therefore in the kernel of A

ᵀ
.

So w∗
I
is in the kernel of A

ᵀ
A and therefore the kernel of A. By Equation 68, this tells us that ΛV

ᵀ
w∗

E
= λEV

ᵀ
w∗

E
,

and therefore V
ᵀ
w∗

E
is an eigenvector of Λ with eigenvalue λE . We therefore arrive at a fixed point for the system in

which V
ᵀ
w∗

E
is one-hot with support on the kernel of AA

ᵀ
, and w∗

I
is in the kernel of A. This implies w∗

I

ᵀ
yI = 0 (cf.

Eq. 50) which is biologically implausible since we constrain synaptic weights w∗
I
and firing rates yI to be positive.

Under mild assumptions regarding Λ and AA
ᵀ
, we have thus exhaustively characterized the fixed points of the

system.

2.2 Stability analysis

We first consider the stability of fixed points that are regular eigenvectors of the modified covariance matrix and

discuss the case of non-eigenvector fixed points afterwards. With Eq. 45, for the Jacobian J it follows (cf. Eq. 29)

τ J

����
∗
= τ

d ¤w
dw

�����
∗
=

[
1 −

v∗
E
cE

ᵀ

cE
ᵀ
v∗
E

−
v∗
I
cI
ᵀ

cI
ᵀ
v∗
I

] [
C − λ∗1

]
, [76]

1Briefly, the two normalization conditions are kE = cT w∗
E
, and kI = cT w∗

I
=

λE
λI
cT A

ᵀ
V
ᵀ
w∗
E
, where we used Eq. 70. Then, by inserting Eqs. 74

we get two linear equations for the two unknown components of w∗
E
, which can be solved in terms of kE , kI, λi, λj . We can then insert the solution

for w∗
E
into Eq. 70 to obtain w∗

I
, which together defines all components of the eigenvector.

2Note that ker(Aᵀ ) = ker(AAᵀ ) and ker(A) = ker(AᵀA), for any matrix A.
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where v∗
E
and v∗

I
are the excitatory and the inhibitory part of the eigenvector fixed point w∗ = v∗ with eigenvalue λ∗,

with an additional set of zeros to reach the correct dimensionality of the vector (cf. Eq. 41). To find the eigenvalues

λJ of the Jacobian, we switch to the eigenbasis of the modified covariance matrix1:

⇒ V−1 J

����
∗
V = V−1τ−1VV−1

[
1 −

v∗
E
cE

ᵀ

cE
ᵀ
v∗
E

−
v∗
I
cI
ᵀ

cI
ᵀ
v∗
I

]
V

[
Λ − λ∗1

]
, [77]

where we inserted VV−1 ≡ 1. The result is a block triangular matrix where each block on the diagonal corresponds

to one regular eigenvector and its potentially multiple null eigenvectors. To better see this, we consider the first

and second part of Eq. 77 separately. We define ε ≡ τ−1, which remains a diagonal matrix with time constants for

excitatory and inhibitory synapses on the diagonal, εE = 1εE and εI = 1εI. Inserting the definition of the eigenvectors
matrix and its inverse (Eq. 52) we write

V−1τ−1V =
©«
(1 − AAᵀ)−1 0

0 (1 − AᵀA)−1
ª®¬©«

V
ᵀ −A

−AᵀVᵀ 1

ª®¬©«
εE 0

0 εI

ª®¬©«
V VA

A
ᵀ

1

ª®¬ [78]

=
©«
(1 − AAᵀ)−1 0

0 (1 − AᵀA)−1
ª®¬
(
εE − εIAA

ᵀ (εE − εI)A
(εI − εE)A

ᵀ
εI − εEA

ᵀ
A

)
. [79]

As one would expect, for εE = εI, this is equal to a scalar times the identity matrix. When we switch columns and

rows such that pairs of regular and corresponding null eigenvectors form blocks, this becomes a block diagonal

matrix. Note that this does not change the determinant or the eigenvalues of the matrix as for each row switch,

there is a corresponding column switch that maintains the characteristic polynomial. Alternatively, we can assume

that the matrix of eigenvectors V and its inverse V−1 are already appropriately sorted. Without loss of generality, we

assume that the first columns of V are the fixed point’s eigenvector v∗ and its corresponding null eigenvectors, and

write2

V−1τ−1V =
©«
(1 − a∗ᵀa∗)−1 0

0 (1 − a∗a∗ᵀ)−1
0

0
. . .

ª®®®¬
©«
εE − εIa

∗ᵀa∗ (εE − εI)a∗
ᵀ

(εI − εE)a∗ εI − εEa
∗a∗

ᵀ 0

0
. . .

ª®®®¬, [80]

where a∗ is a column vector that holds the multiples of the inhibitory neurons that are tuned to the feedforward

eigenvector v∗. As before, 0 are matrices of zeros and appropriate dimensionality, and ellipsis indicate continuing

blocks on the diagonal with similar terms that belong to the non-fixed point eigenvectors and their null eigenvectors3.

Similarly, we can write the second part of Eq. 77 as a block triangular matrix. Before sorting, we write

V−1

[
v∗
E
cE

ᵀ

cE
ᵀ
v∗
E

+
v∗
I
cI
ᵀ

cI
ᵀ
v∗
I

]
V ≡ V−1

[
v∗EdE

ᵀ + v∗I dI
ᵀ]

= V−1©«
v∗
E
dE

ᵀ

v∗
I
dI
ᵀ

ª®¬, [81]

dE
ᵀ
=
cE

ᵀ
V

cE
ᵀ
v∗
E

, dI
ᵀ
=
cI
ᵀ
V

cI
ᵀ
v∗
I

, v∗E = Ve∗, v∗I = A
ᵀ
e∗, [82]

where dE
ᵀ
and dI

ᵀ
are row vectors that hold the L1-norms of the eigenvectors’ excitatory and inhibitory parts as a

fraction of the L1-norm of the fixed point eigenvector’s excitatory and inhibitory parts. The vector e∗ is zero except for
one entry, equal to one, which corresponds to the fixed point feedforward eigenvector v∗. We continue by multiplying

the inverse eigenvector matrix V−1 from the left:

V−1©«
v∗
E
dE

ᵀ

v∗
I
dI
ᵀ

ª®¬ = N
©«

V
ᵀ −A

−AᵀVᵀ 1

ª®¬©«
Ve∗dE

ᵀ

A
ᵀ
e∗dI

ᵀ
ª®¬ = N

©«
e∗dE

ᵀ − AAᵀe∗dI
ᵀ

−Aᵀe∗dE
ᵀ + Aᵀe∗dI

ᵀ
ª®¬, [83]

1Note that we must make use of the inverse instead of the transpose since, in general, the eigenvector matrix V is not orthonormal.
2Note that when sorted, A

ᵀ
A is a block diagonal matrix. Further, as noted before, the matrix AA

ᵀ
is always diagonal.

3The dimensionalities of these blocks depend on the number inhibitory neurons tuned to the respective feedforward eigenvector, i.e., if there

are n
†
I
inhibitory neurons tuned to a specific feedforward eigenvector v†, the dimensionality of the corresponding block is 1+nI, due to one regular

eigenvector and n
†
I
corresponding null eigenvectors.
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where we defined the normalization matrix N of the inverse eigenvector matrix V−1 (cf. Eq. 52) to improve readability.

It follows that the matrix above holds non-zero values in only a few rows, corresponding to the fixed point eigenvector

(top block) and its null eigenvectors (bottom block). After rearranging, we get

N
©«
e∗dE

ᵀ − AAᵀe∗dI
ᵀ

−Aᵀe∗dE
ᵀ + Aᵀe∗dI

ᵀ
ª®¬ = N

©«
d∗
E
− a∗ᵀa∗d∗

I
dþ
E

ᵀ − a∗ᵀa∗dþ
I

ᵀ

−a∗d∗
E
+ a∗d∗

I
−a∗dþ

E

ᵀ + a∗dþ
I

ᵀ ...

0 0

ª®®®¬ [84]

where d∗
E
, d∗

I
and dþ

E

ᵀ
, dþ

I

ᵀ
are the entries of dE

ᵀ
, dI

ᵀ
that correspond to the fixed point eigenvector and its null

eigenvectors, respectively. As before, ellipsis indicate additional non-zero entries. To find the respective entries of

dE , dI we use the definition of V (Eq. 52) to write

dE
ᵀ
=
cE

ᵀ
V

cE
ᵀ
v∗
E

=
1

cE
ᵀ
v∗

(
cE

ᵀ
V, cE

ᵀ
VA

)
, [85]

dI
ᵀ
=
cI
ᵀ
V

cI
ᵀ
v∗
I

=
1

cI
ᵀ
A
ᵀ
e∗

(
cI
ᵀ
A
ᵀ
, cI

ᵀ
1
)
. [86]

After rearranging the entries that correspond to the fixed point eigenvector and its null eigenvectors to the front we

get

dE
ᵀ
=

(
d∗
E, d

þ
E

ᵀ
, ...

)
=

1

cE
ᵀ
v∗

(
cE

ᵀ
Ve∗, cE

ᵀ
v∗a∗

ᵀ)
=

(
1, a∗

ᵀ
, ...

)
, [87]

dI
ᵀ
=

(
d∗
I , d

þ
I

ᵀ
, ...

)
=

1

cI
ᵀ
A
ᵀ
e∗

(
cI
ᵀ
A
ᵀ
e∗, cI

ᵀ)
=

(
1,

cI
ᵀ

c
ᵀ
a∗
, ...

)
, [88]

where e∗ selects the proper columns and c
ᵀ

is a row vector of ones of appropriate dimensionality. We insert

Eq. 87 & 88 into Eq. 84 and find

V−1

[
v∗
E
cE

ᵀ

cE
ᵀ
v∗
E

+
v∗
I
cI
ᵀ

cI
ᵀ
v∗
I

]
V = N

©«
1 − a∗ᵀa∗ 0

0
a∗cI

ᵀ

cT a∗
− a∗a∗ᵀ

...

0 0

ª®®®®¬
≡

©«
1 0

0 M∗
...

0 0

ª®®®¬, [89]

M∗ =
(
1 − a∗aᵀ

)−1 (
a∗cI

ᵀ

c
ᵀ
a∗

− a∗a∗ᵀ
)
, [90]

where we defined the matrix M∗.
In summary, we find that after rearrangement, Eq. 77 is a block triangular matrix.

⇒ V−1 J

����
∗
V = N

©«
εE − εIa

∗ᵀa∗ (εE − εI)a∗
ᵀ

(εI − εE)a∗ εI − εEa
∗a∗

ᵀ 0

0
. . .

ª®®®¬
©«
0 0

0 1 −M∗ ...

0 1

ª®®¬
[
Λ − λ∗1

]
, [91]

where we used Eq. 80 and Eq. 89. Therefore, to find the eigenvalues, we consider each diagonal block separately.

We make the simplifying assumption that there is exactly one inhibitory neuron tuned to each feedforward eigen-

vector. Then, a∗ → a∗ becomes a scalar, N and A = A
ᵀ
become diagonal, and M∗ → 1. The transformed Jacobian

remains triangular and becomes

⇒ V−1 J

����
∗
V = N

©«
εE − εIa

∗2 (εE − εI)a∗

(εI − εE)a∗ εI − εEa
∗2 0

0
. . .

ª®®®¬
©«
0 0

0 0
...

0 1

ª®®¬
[
Λ − λ∗1

]
, [92]

with 2×2 blocks on the diagonal of which we only show the first, that corresponds to perturbations in the direction of

the fixed point eigenvector or its null eigenvector1. From the matrix product above, we see that their corresponding

1Since we assumed that there is exactly one inhibitory neuron per feedforward eigenvector, there is also exactly one null eigenvector per

feedforward eigenvector (cf. Eq. 52)
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eigenvalues must be zero since the first two columns of the second to last matrix are zero. For perturbations in the

direction of a non-fixed point eigenvector v† or its null eigenvector we have to consider the block matrix

J†∗ ≡ V †−1 J

����
∗
V † =

1

1 − a†2

(
εE − εIa

†2 εE − εI

(−εE + εI)a†2 −εEa†2 + εI

) (
λ† − λ∗ 0

0 −λ∗

)
, [93]

where V † is a two-column matrix that holds v† and its null eigenvector. The eigenvalues of this matrix are negative

under two conditions. First, its determinant must be positive, and second, its trace must be negative. For trace and

determinant, we find

det(J†∗) =
1(

1 − a†2
)2 (

1 − 2a†2 + a†4
)
εEεI

(
λ∗ − λ†

)
λ∗, [94]

tr(J†∗) =
1(

1 − a†2
) (
εE

[
λ† −

(
1 − a†2

)
λ∗

]
+ εI

[
−a†2λ† −

(
1 − a†2

)
λ∗

] )
[95]

Finally, the two stability conditions read

det(J†∗)
!
> 0 ⇒ −

(
λ† − λ∗

)
λ∗εEεI > 0, [96]

tr(J†∗)
!
< 0 ⇒ εE (λ† − λ∗) − εI

(
a†2λ† + λ∗

)
< 0, [97]

where, for the trace term, we made use of the equality λ† = λ†
(
1 − a†2

)
(cf. Eq. 53) to replace λ†.

2.2.1 Principal component analysis in inhibition modified input space

The first stability condition above states that only the fixed point v∗ with the largest eigenvalue, λ∗ > λ†, [λ†, can
be stable, and then only if it is not repulsive, i.e., provided that its corresponding eigenvalue is larger than zero. An

eigenvector can become repulsive if inhibition is sufficiently strong, i.e., if λ∗ = λ∗ (1 − a∗2) < 0 ⇒ a∗2 > 1. This

implies that post-synaptic neurons tuned to repulsive eigenvectors receive more inhibition than excitation, which

results in negative firing rates r∗ = yE
ᵀ
v∗ − yE

ᵀ
v∗a∗2 < 0, for a∗2 > 1 (cf. Eq. 55). However, in biology, neurons with

larger inhibitory than excitatory input are hyperpolarized and remain silent, which is why we assume λ∗ > 0. In the

following, we call the combination of the excitatory feedforward attraction of an eigenvector λ∗ (cf. Sec. 1.1) plus
any contribution of laterally projecting neurons, in this case, minus the lateral inhibitory repulsion a∗2λ∗, the effective
attraction, λ∗, of a feedforward input mode.

For εI = εE , the second condition reduces to1 λ† −2λ∗ < 0, which holds if the first condition is met. Therefore, the

post-synaptic neuron becomes tuned to the eigenvector of the modified covariance matrix with the largest eigen-

value, i.e., it performs principal component analysis on a modified feedforward input space, where the attraction of

feedforward eigenvectors is modified by laterally projecting inhibitory neurons (cf. Eq. 53). We will further discuss

the notion of a modified input space in Section 3.

2.2.2 Fast inhibition increases stability

In our networks, stationary states can still emerge when inhibitory plasticity is slower than excitatory plasticity. In the

extreme case of static inhibition, εI = 0, the second stability condition is still satisfied if the fixed point attraction λ∗

is larger than the feedforward attraction λ† of any other eigenvector, λ† − λ∗ < 0. When inhibitory weights are static,

they remain tuned to the fixed point and the repulsive component of competing eigenvectors a†2λ† do not matter

for stability. This explains why we have to consider only the attractive part λ† of the effective attraction λ† in the first
term of the second stability condition. However, for growing εI > 0, the influence of the inhibitory part of competing

eigenvectors increases, corresponding to an increasingly negative second term in the second stability condition2.

Then, for sufficiently fast inhibitory plasticity εI > εE , the second condition always holds. Therefore, we consider

slightly faster inhibitory than excitatory plasticity in our numerical simulations (cf. Table 1).

1Here, we make use of the equality λ† = λ†
(
1 − a†2

)
.

2Note that we consider non-repulsive fixed points λ∗ > 0 and inhibitory neurons with positive firing rates, i.e., a > 0, [a, such that the second

term in the second stability condition is always negative.

Eckmann et al., 2024 | Supplementary Material 13



Supplementary Material | PNAS

2.2.3 Stability of non-eigenvector fixed points

Before, we considered the stability of fixed points w∗ that are eigenvectors v of the modified covariance matrix

C. Weight vectors of that shape put a strong constraint on the choice of the weight norms, as the ratio between

the excitatory and the inhibitory weight norms is given by the norms of the excitatory and the inhibitory parts of

the eigenvector (cf. Eq. 52). The issue was solved in that we found that arbitrary combinations of multiples of the

excitatory and inhibitory components of regular eigenvectors are also fixed points (cf. Sec. 2.1.3). We will now

consider the stability of such non-eigenvector fixed points.

Let the shape of a fixed point w∗ be (cf. Eq. 56)

w∗ =

(
kEv

∗
E

kIv
∗
I

)
=

(
1kE 0

0 1kI

)
v∗ ≡ Kv∗, [98]

where kE and kI are scalar constants. We recapitulate the general weight dynamics as given in Eq. 45:

τ ¤w =

[
1 − wEcE

ᵀ

cE
ᵀ
wE

− wIcI
ᵀ

cI
ᵀ
wI

]
Cw. [99]

Instead of evaluating the eigenvalues of the Jacobian, we now switch to a new coordinate system in which the

Jacobian will have a familiar shape. This is possible since fixed points and their stability do not depend on the

choice of coordinates. We define:

w′ ≡ K−1/2w, ⇒ w = K
1/2w′, [100]

from which the weight dynamics can be written as

¤w′
= K−1/2 ¤w = K−1/2τ−1

[
1 −

K
1/2w′

E
cE

ᵀ

cE
ᵀ
K

1/2w′
E

−
K

1/2w′
I
cI
ᵀ

cI
ᵀ
K

1/2w′
I

]
K−1/2K

1/2CK
1/2w′, [101]

where we inserted K−1/2K
1/2 = 1. We now make use of the following identities:

cA
ᵀ
K

1/2w′
A = k

1/2
A
cA

ᵀ
w′

A, K
1/2w′

AcA
ᵀ
= k

1/2
A
w′

AcA
ᵀ
,

w′
A
cA

ᵀ

cA
ᵀ
w′

A

K−1/2 = K−1/2w
′
A
cA

ᵀ

cA
ᵀ
w′

A

, [A ∈ {E, I}. [102]

We find that the K
1/2 matrices inside the bracket cancel, and we can pull K−1/2 from the right side to the left side of

the bracket:

¤w′
= K−1/2 ¤w = K−1/2τ−1K−1/2

[
1 −

w′
E
cE

ᵀ

cE
ᵀ
w′

E

−
w′

I
cI
ᵀ

cI
ᵀ
w′

I

]
K

1/2CK
1/2w′. [103]

We introduce the following definitions

τ ′ = τK, C′ = K
1/2CK

1/2 =

〈(
k
1/2
E
yE

k
1/2
I
yI

) (
k
1/2
E
yE
ᵀ
,−k1/2

I
yI
ᵀ
)ᵀ〉
. [104]

Note that C′ is not the modified covariance matrix expressed in the new coordinate system but a new modified

covariance matrix that corresponds to an altered input space where excitatory and inhibitory input firing rates yE , yI
are scaled by k

1/2
E
, k

1/2
I
, respectively. In summary, we can write the plasticity of the weight vector in the new coordinate

system as1

τ ′ ¤w′
=

[
1 −

w′
E
cE

ᵀ

cE
ᵀ
w′

E

−
w′

I
cI
ᵀ

cI
ᵀ
w′

I

]
C′w′ . [105]

We are interested in the stability of the fixed points given in Eq. 98. In the new coordinate system, they become

w′∗ = K−1/2w∗ = K−1/2Kv∗ = K
1/2v∗. [106]

1Here, τ−1 and K−1/2 are both diagonal matrices and commute.
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It is straightforward to proof that w ′∗ is an eigenvector of the new modified covariance matrix C′ with eigenvalue

λ′∗ = (kE − kIa
∗2)λ∗: With C defined in Eq. 51 we get

C′w′∗ = K
1/2CK

1/2K
1/2v∗ [107]

= K
1/2©«

C −VΛA

A
ᵀ
ΛV

ᵀ −AᵀΛA
ª®¬©«
Ve∗kE

A
ᵀ
e∗kI

ª®¬ [108]

= K
1/2©«

Ve∗λ∗kE − VΛAAᵀe∗kI

A
ᵀ
e∗λ∗kE − AᵀΛAAᵀe∗kI

ª®¬ [109]

= K
1/2©«

Ve∗

A
ᵀ
e∗

ª®¬(kE − kIa
∗2)λ∗ = w′∗λ′∗, [110]

where we defined a∗2 as the entry of the diagonal matrix AA
ᵀ
that corresponds to the eigenvector v∗1. Note that

this is independent of the change of variables, however, only in the new coordinate system one can identify the new

modified covariance matrix with an actual input space2, where pre-synaptic firing rates are scaled by kE , kI (Eq. 104).

In theory, we can now proceed in finding the eigenvalues of the Jacobian3, as explained in Section 2.2. . As before,

one finds that stability is largely determined by the eigenvalues of the modified covariance matrix, which now are λ′.
Apart from providing a principled way to determine if a non-eigenvector fixed point is stable, our formulation

provides additional insight: Let’s assume the total synaptic inhibitory weight of a neuron is very small, much smaller

than any eigenvector of C would suggest, i.e., kI � 1, while the excitatory weight norm is equal to one, which implies

kE = 1. As one would expect intuitively, the neuron does not exhibit much of the repulsion of the inhibitory neurons

(cf. Eq. 104 for kI � 1), and its stability would be primarily determined by the excitatory attraction of the different

eigenvector modes, i.e., λ′ = (kE − kIa
∗2)λ ≈ λ. In the extreme case, when the inhibitory weight norm is zero, i.e.,

kI = 0, only the activity of the excitatory population is relevant.

While the effective plasticity timescale τ ′ = τK in Equation 105 depends on the magnitude of the excitatory and

the inhibitory part of the specific fixed point under consideration, this does not mean that the speed of synaptic

plasticity is different from the original formulation in Equation 45. For example, when we consider a fixed point

with a decreased inhibitory weight norm kI < 1, the effective inhibitory plasticity appears to increase, since τ ′
I
=

τIkI. However, this effect is balanced by the decrease in pre-synaptic inhibitory firing rates, which decreases with

decreasing kI. Similarly, the coordinate system in which we describe the weight dynamics also does not affect the

speed of plasticity4. From Equation 103 we see that we can freely shift scaling matrices K between the modified

covariance matrix and the plasticity timescale by pulling diagonal matrices of the same shape as K through the

bracket (cf. Eq. 102). However, in Section 2.2 we only considered the stability of fixed points that are regular

eigenvectors of the modified covariance matrix. If we had chosen, e.g., C′ = K−1/2CK
1/2 and τ ′ = τ, then w′∗ = K

1/2v∗

(cf. Eq. 106) would not be a regular eigenvector of C′ (cf. Eq. 107f.). Therefore, our derivation in Section 2.2 would

not apply, and we would need to find a different way to proof stability.

3 Lateral input stretches and compresses the feedforward input

space

Before we consider how synapse-type-specific Hebbian plasticity affects learning in fully plastic recurrent networks,

we first build additional intuition for how static lateral input affects the weight dynamics. From the previous section

we know that in this case the eigenvalues of the modified covariance matrix are the key factors that determine fixed

point stability, and from Sections 1.1 & 2.1.2 we know that these eigenvalues describe the Hebbian growth towards

the corresponding eigenvector that can be attractive or repulsive, corresponding to a positive or negative eigenvalue.

When a neuron receives only feedforward excitatory input (Fig. S2A), the weight dynamics is described by a true

covariance matrix with eigenvalues equal to the variances along the principal components of the feedforward input

space (cf. Sec. 1). Then the weight vector in the fixed point aligns with the direction of maximal variance in the

1a∗2 = a∗
ᵀ
a∗, cf. Eq. 80.

2The new modified covariance matrix in the original coordinates is K
1/2C′K−1/2 = KC, with eigenvectors Kv∗.

3We would have to employ the eigenvector basis of the new modified covariance matrix V′ = K1/2V for triangularization.
4A change in the overall weight norms, however, can affect the magnitude of postsynaptic activities and synaptic changes.
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A B C

Figure S2: Input space modification due to lateral input. (A) Top: a single neuron with firing rate r receives synaptic inputsw from a population

of excitatory neurons y. Bottom: input distribution projected onto the first two input dimensions. Each dot represents the firing rates of the first

two neurons during one input pattern. (Contour lines in light gray). Under a linear Hebbian learning rule, the neuron becomes selective for the

direction of maximum variance, the first principal component (cf. Sec. 1). (B) Top: Same as in A for a neuron that receives additional inputwq from

a laterally projecting excitatory neuron rq which is tuned to an eigenvector q of the original input covariance matrix. Bottom: the effective input

space yeff of the target neuron (dark blue triangle) is warped such that the variance along the eigenvector q (blue arrow) is stretched in proportion

to the absolute value of the weight vector q. The contour lines of the original input distribution from A are shown in light gray for reference. (C)

Top: Same as B for a laterally projecting inhibitory neuron. Bottom: Now, the effective input space is compressed. See text for details.

input space (Fig.1G). In the following, we introduce a similar perspective and show that additional lateral input can

be interpreted to stretch and compress the original feedforward input space, while the feedforward component of

the weight vector performs PCA on this modified input space.

We consider a circuit of two neurons that both receive feedforward input from a population of input neurons y

(Fig. S2B, top). Let the first neuron have a fixed, non-plastic set of feedforward weights q and firing rate

rq = q
ᵀ
y [111]

We let the first neuron project laterally onto the second neuron via a synaptic weight wq, without receiving any lateral

input itself. Then the equilibrium firing rate of the second neuron is

r = wqrq +w
ᵀ
y [112]

where we assume that both w and wq are plastic according to a stabilized Hebbian rule.

From the perspective of the second neuron, the input space is increased by one dimension due to the additional

lateral input, i.e., we can write Eq. 112 as

r = w
ᵀ
y, y =

(
y
ᵀ
,q
ᵀ
y
)ᵀ
, w =

(
w
ᵀ
,wq

)ᵀ
, [113]

where, we defined the new input vector y and the combined input weights w. Effectively this is still a feedforward

network without feedback, and the static covariance matrix C of the new inputs y fully determines the average

synaptic weight dynamics1:

C =
〈
yy
ᵀ〉

=

〈(
yyT yyT q

q
ᵀ
yyT q

ᵀ
yyT q

)〉
=

(
C Cq

q
ᵀ
C q

ᵀ
Cq

)
, [114]

where C is the covariance matrix of the original input y. We are interested in the eigenvectors v and eigenvalues λ
of this matrix for two reasons. First, because they describe the attraction towards different input modes due to the

Hebbian term in our competitive plasticity rule. Second, because eigenvectors are fixed points with their stability

1In this case, C is a true covariance matrix, since the lateral projecting neuron is excitatory.
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mostly determined by the eigenvalues. Eigenvectors and eigenvalues must satisfy

Cv = λv, [115](
C Cq

q
ᵀ
C q

ᵀ
Cq

) (
vF

vq

)
= λ

(
vF

vq

)
. [116]

where vq and vF are the lateral and the feedforward components of the eigenvector, respectively. In the following,

we focus on the feedforward component for different q. It follows

CvF +Cqvq = λvF , [117]

q
ᵀ
CvF + qᵀCqvq = λvq. [118]

C
(
vF + qvq

)
= λvF , [119]

q
ᵀ
C

(
vF + qvq

)
= λvq. [120]

Inserting the first into the second expression gives vq = q
ᵀ
vF which, when inserted into the first expression, results

in:

C
(
1 + qqᵀ

)
vF = λvF . [121]

This is again an eigenvector equation, where the feedforward components of the original eigenvector vF , are them-

selves eigenvectors of the matrix C(1+qqᵀ). Note that for q = 0 we recover the case without lateral projections and

feedforward components are multiples of eigenvectors of C with attractions λ = λ. For general q, the solution is not
straightforward: We consider the equation in the input eigenspace, where Eq. 121 becomes

Λ
(
1 + qvqv

ᵀ)
vFv = λvFv, [122]

with Λ being the diagonal matrix of feedforward eigenvalues λ and the subscript (·)v indicates a vector in the eigen-
basis of C. In this basis, eigenvectors of C are unit vectors, i.e., vv = e, where e is a vector of zeros with a single

entry equal to one, corresponding to the respective eigenvector. When q contains components of more than one

eigenvector, the matrix qvqv
ᵀ
is not diagonal and eigenvectors of C, do not solve the equation. Here we consider a

simplified case: When the first neuron had plastic feedforward input, we know from Section 1 that it would converge

to a multiple of an eigenvector of the feedforward covariance matrix1, q ∝ v†, withCv† = λ†v†. Then, qvqv
ᵀ
= e†e†

ᵀ
is

diagonal with a single non-zero entry, and from Equation 122 it is obvious that feedforward eigenvector components

of C are eigenvectors of the feedforward covariance matrix C that solve Eq. 121.

To find the eigenvalues λ, we first consider feedforward eigenvector components vF that are orthogonal to q:

vF ∝ v‡ ⊥ q ∝ v† ⇒ q
ᵀ
vF ∝ v†ᵀv‡ = 0, [123]

Then it follows from Equation 121 that the corresponding eigenvalue of the modified covariance matrix equals the

eigenvalue of the original covariance matrix, which is, by definition, equal to the variance σ‡2 of the input distribution
along the respective eigenvector.

⇒ λ‡ = λ‡ = σ‡2. [124]

Therefore, input modes that are orthogonal to the tuning of the laterally projecting neuron maintain their attractions,

equal to the respective eigenvalues of C, and the laterally projecting neuron does not affect the Hebbian growth

dynamics in the input subspace orthogonal to q2. The remaining feedforward eigenvector component is proportional

to q:

vF ∝ v† ‖ q = aqv
† ⇒ q

ᵀ
vF ∝ v†ᵀv† = 1, ⇒ λ† = λ† + λ†a2q = σ†2 + σ2

q , [125]

1More precisely, q would converge to a multiple of the principal eigenvector. Here, we consider the more general case where q is proportional

to an arbitrary eigenvector. We will see that with suitable lateral input, any feedforward eigenvector can be stable.
2However, the constraint term in the weight dynamics introduces interactions between the subspaces orthogonal and parallel to q.
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where we again made use of Equation 121. Here, aq is equal to ‖q‖, the L2-norm of q, and σ2
q = λ†a2q is the firing

rate variance of the laterally projecting neuron 1. Therefore, the second neuron adjusts its feedforward weights w

as if the variance along the eigenvector q was increased by σ2
q (Fig. S2B, bottom). In that sense, the second neuron

‘perceives’ its feedforward input space as stretched and we speak of a modified input space (cf. Sec. 2.2.1) that is

described by a modified covariance matrix C. We note that it is possible to choose q such that an arbitrary direction

of the input space becomes stable. For q = C−1
h Eq. 121 is2(
C + hhᵀC−1

)
vF = λvF . [126]

For increasing ‖h‖, the principal eigenvector transitions from vF ∝ v, for ‖h‖ = 0, to v∞
F

∝ h for ‖h‖ → ∞. In the

following, we only consider the case when q is parallel to one of the eigenvectors of C. Then, for sufficiently large

aq and q ∝ v†, an arbitrary non-principle eigenvector v† with attraction λ† = λ† (1 + a2q) can become stable. In that

case, the corresponding fixed point is of the following shape3:

⇒ w∗ =

(
w∗

w∗
q

)
=

(
w∗

q
ᵀ
w∗

)
∝

(
v†

aq

)
, [127]

When the laterally projecting neuron is inhibitory (Fig. S2C, top), the modified covariance matrix becomes (cf.

Eq. 51)

C =
(

C −Cq
q
ᵀ
C −qᵀCq

)
, [128]

and it follows that the input space is compressed along q ∝ v† (Fig. S2C, bottom):

λ† = λ† − λ†a2q = σ†2 − σ2
q . [129]

In the case of lateral inhibition and sufficiently large vector norms aq, an eigenvector can become repulsive, i.e., its

eigenvalue becomes negative. Geometrically, this corresponds to a reflection of the input space along q through

the origin, which can no longer be visualized as intuitively as in Fig. S2.

We can generalize the overall approach to multiple excitatory and inhibitory neurons such that the effective

attraction towards a feedforward eigenvector becomes

λ = λ
(
1 + ‖aE ‖2 − ‖aI‖2

)
, [130]

⇒ λ = σ2 + ‖σE ‖2 − ‖σI‖2 , [131]

where λ = σ2, the vectors aE , aI hold the feedforward vector norms of the laterally projecting neurons that are tuned

to the respective feedforward eigenvector, and σA =
√
λaA, A ∈ {E, I}, hold the standard deviations of their firing

rates. This allows writing the regular fixed points as4

w∗ =
©«
w∗

w∗
E

w∗
I

ª®®¬ ∝
©«
v

aE

aI

ª®®¬ = σ−1©«
σv

σE

σI

ª®®¬ , [132]

This implies that for regular fixed points, the total synaptic weight is distributed among lateral synapses in proportion

to the standard deviation of their pre-synaptic activities. Note that the different weight norms of the excitatory and

inhibitory part of non-eigenvector fixed points can distort this relation (cf. Sec. 2.1.3).

In summary, we demonstrated how static lateral input can be interpreted to reshape the feedforward attraction

landscape of afferent neurons. Note that these results are independent of what causes the laterally projecting neu-

rons’ tuning. The second, afferent neuron does not ‘see’ what inputs to the laterally projecting neurons cause their

1From Equation 111 we immediately find σ2
q = 〈r2q 〉 − 〈rq 〉2 = q

ᵀ
Cq = λ†a2q, for q = aqv

†, where we assumed zero mean input, 〈y〉 = 0.
2Note that C−1 = (C−1 )ᵀ since C is a true covariance matrix, i.e., C and C−1 are symmetric.
3If aq is too small so that λ† < λ‡ = λ‡, the principal feedforward eigenvector v‡ of C with eigenvalue λ‡ is stable and w∗ = (v‡ᵀ, 0)ᵀ.
4If none of the laterally projecting neurons is tuned to a specific feedforward eigenvector v‡, i.e., v‡ ⊥ qi [i, the corresponding fixed point

becomes v‡ = (v‡ᵀ, 0T , 0T )ᵀ.
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tuning. For example, in addition to feedforward input, laterally projecting neurons might be integrated into a recur-

rent circuit of neurons that are all tuned to the same eigenvector1. Then σ2
E
,σ2

I
result from recurrent interaction in

addition to the norm of the feedforward weight vectors. However, for the dynamics of the second neuron, it would

not make any difference as long as the firing rate statistics of its pre-synaptic inputs were the same. In the following

sections, we will consider circuits where the firing rate statistics emerge from recurrent interactions.

4 Eigencircuits

In the previous section we considered neurons that receive feedforward input from an excitatory population and

lateral input from neurons with fixed feedforward tuning (Fig. S2). We found that the attraction of different feedfor-

ward input modes is determined by the eigenvalues of a modified covariance matrix, composed of a feedforward

contribution and a contribution due to the laterally projecting neurons that is proportional to the variance of their

firing rates (Eq. 131). In this section, we consider networks of recurrently connected, laterally projecting neurons

and explore the variances of their firing rates.

First, we consider a network of excitatory and inhibitory neurons yE, yI that are laterally connected to themselves

and each other and receive feedforward input from the same excitatory population y. We assume that the activity

in the network is dominated by feedforward input such that neurons become selective for different eigenvectors of

the feedforward covariance matrix C = 〈yyT 〉, e.g., the steady state firing rate ya of a neuron that is tuned to an

eigenvector va is proportional to va
ᵀ
y (Fig. 4A), where the proportionality factor depends on the number and firing

rates of other neurons that are tuned to the same eigenvector (see Sec. 4.1). Then the average Hebbian growth of a

synapse that connects two neurons that are tuned to different eigenvectors is2:

〈 ¤wab〉 ∝ 〈yayb〉 ∝ 〈va
ᵀ
yy
ᵀ
vb〉 = va

ᵀ
Cvb = λbva

ᵀ
vb = 0. [133]

Due to the competition for synaptic resources, the synapse loses out to the non-zero growth of synapses that

connect neurons that are tuned to the same eigenvector, and decays to zero over time (Fig. 4B). Eventually, the

circuit is separated into sub-circuits that are tuned to different eigenvectors with recurrent connections within, but

not between sub-circuits. Since there is one sub-circuit per eigenvector of the feedforward covariance matrix, we

call these decoupled sub-circuits ‘eigencircuits’ (cf. Fig. 4).

4.1 Variance propagation

In Section 3, we have seen that the attraction and the stability of a feedforward eigenvector are closely related to

the firing rate variances of laterally projecting neurons, independent from how these variances arise. In the effective

feedforward circuits that we considered, it was straightforward to compute variances based on feedforward weight

norms (Eq.131 f.). We now show how variances can be determined in recurrent eigencircuits, which allows to quantify

the effective attraction of an input mode.

We consider a generic eigencircuit and investigate how variances propagate through the network, i.e., our goal is

to express the standard deviation of a neuron’s firing rate as a function of the standard deviations of its pre-synaptic

input firing rates. For a neuron in an eigencircuit, all pre-synaptic inputs with non-zero synaptic weight are tuned

to the same feedforward eigenvector v. We only consider these non-zero entries and assume that the steady state

firing rate of an arbitrary neuron can be written as (Fig. S3A)

r = w
ᵀ
y +wE

ᵀ
yE −wI

ᵀ
yI, [134]

yE = aE (v
ᵀ
y), yI = aI (v

ᵀ
y), [135]

Note that before, aE and aI referred to feedforward weight norms (cf. Sec. 3). Now these vectors more generally

express how firing rate variances relate to the input variance along the eigencircuit’s feedforward eigenvector, without

making any assumptions about how this tuning arises. We will show in Section 5 that this assumption is correct and

specify how the entries of aE , aI relate to the recurrent excitatory and inhibitory weights (cf. Eqs. 161 & 162). For

1Another example is neurons that project from outside the local circuit, e.g., from another brain area that is higher up in the processing

hierarchy.
2Since we assume Hebbian plasticity between all types of neurons, excitatory and inhibitory, we do not specify the neuron type. ya and yb are

the firing rates of two arbitrary vectors that are part of two different eigencircuits.
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the weight vectors, we require that the excitatory and inhibitory parts are normalized to maintain the total amount of

inhibitory and excitatory synaptic resources:(
w

wE

)
= WE

vE

‖vE ‖p
, wI = WI

vI

| |vI | |p
, [136]

vE =

(
v

aE

)
, vI = aI, [137]

whereWE ,WI are scalar weight norms, and vE , vI are the excitatory and inhibitory parts of the fixed point eigenvector

(cf. Sec. 5), with entries that are proportional to the pre-synaptic standard deviations (cf. Eq. 132). Then, the p-norm,

‖·‖p, is maintained due to competition for synaptic resources1. For the post-synaptic firing rate, it follows

r =

(
1 + ‖aE ‖2

‖vE ‖p
WE − ‖aI‖2

‖vI‖p
WI

)
(vᵀy). [138]

The first bracket is a scalar pre-factor which makes it straightforward to compute the standard deviation:

σr =

(
1 + ‖aE ‖2

‖vE ‖p
WE − ‖aI‖2

‖vI‖p
WI

)
σ =

σ2 + ‖aE ‖2σ2

‖vE ‖pσ
WE − ‖aI‖2σ2

‖vI‖pσ
WI, [139]

⇒ σr =

σE
2σE

p

WE −
σ I

2σ I

p

WI , [140]

σE =
(
σ,σE

ᵀ)ᵀ
, σ I = σI, [141]

For a network in the steady state, i.e., when synaptic weights converged, this equation puts the standard deviation of

neural firing rates in relation to each other, i.e., it provides the standard deviation of a post-synaptic neuron’s activity

as a function of the standard deviations of its pre-synaptic input neurons’ activities2. It describes how standard

deviations and variances ‘propagate’ through the network. In the next section, we will use this variance propagation

equation (Eq. 140) to express the standard deviations in terms of only the weight norms and the feedforward standard

deviation σ.

4.2 Consistency conditions provide eigencircuit firing rate variances

We now consider a single eigencircuit where nE excitatory and nI inhibitory neurons are recurrently connected, and

are tuned to the same feedforward eigenvector with standard deviation σ (Fig. S3B). In their steady state, all neurons

have to fulfil the variance propagation equation (Eq. 140). In the fully connected eigencircuit, the firing rate variance

of each neuron depends on the firing rate variances of all other neurons, and all neurons have the same set of non-

zero pre-synaptic inputs. This provides N = nE + nI consistency conditions for the N unknown standard deviations.

For example, the condition for a single excitatory neuron i reads

σ i
E = W i

EE

(
σ2 + ‖σE ‖2

σ + ‖σE ‖1

)
−W i

EI

(
‖σI‖2

‖σI‖1

)
, [142]

where we chose the L1-norm, p = 1, for normalization (but see Sec. 4.3), andWAB, A,B ∈ {E, I} are the total synaptic
weight that a neuron of type A receives from neurons of type B. We make the simplifying assumption that all neurons

have similar weight norms, i.e., W i
AB

≈ WAB, [i, A,B ∈ {E, I}. Then, also the standard deviations of their activities

are similar, and we approximate σ i
A
≈ σA, [i, A ∈ {E, I}:

‖σA‖2 =
∑
i

σ i2
A ≈ nAσ

2
A, ⇒ σ2 + ‖σA‖2

σ + ‖σA‖1
≈

σ2 + nAσ2
A

σ + nAσA
. [143]

1The vectors (wᵀ,wE
ᵀ )ᵀ and wI are normalized such that

(wᵀ,wE
ᵀ )ᵀ


p
= WE , and ‖wI ‖p = WI. This is achieved by scaling the excitatory

and inhibitory part of the regular eigenvector, i.e., scaling vE by kE = WE/‖vE ‖p, and vI by kI = WI/‖vI ‖p (cf. Sec. 2.1.3)
2Note that we allow self-excitation and self-inhibition, i.e., in a fully connected recurrent network, σr also appears on the right sides of the

equation, as an entry of σE or σ I.
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The standard deviations of excitatory and inhibitory neural firing rates become

σE = WEE

(
σ2 + nEσ2

E

σ + nEσE

)
−WEI

(
nIσ

2
I

nIσI

)
, σI = WIE

(
σ2 + nEσ2

E

σ + nEσE

)
−WII

(
nIσ

2
I

nIσI

)
. [144]

After some algebra, this yields the standard deviations as

σI =
WIE

1 +WII

1

Φ
σE , Φ ≡

[
WEE − WEIWIE

1 +WII

]
, [145]

⇒ σE =
1

2 (1 − Φ) nE

(
−1 ±

√
1 + 4Φ (1 − Φ) nE

)
σ . [146]

This provides standard deviations as a function of the number of neurons in the eigencircuit1, nE , nI, their weight

norms, WAB, and the standard deviation of the feedforward input activity along the corresponding eigenvector, σ.
Via Eq. 131, we can determine how the eigencircuit modifies the attraction of its feedforward eigenvector, i.e., the

effective attraction λ is

λ = σ2 + nEσ2
E − nIσ

2
I ≡ λ + λeig, [147]

where we defined the attraction of the eigencircuit, λeig, and λ is the attraction of the respective feedforward eigen-

vector. In the following, we refer to λ interchangeably as the effective attraction of the eigencircuit or the effective

attraction of the feedforward input mode.

In summary, we assumed that neurons are tuned to feedforward eigenvectors (Eq.135) and showed how the

network decomposes into recurrent eigencircuits. We demonstrated how variances propagate through such eigen-

circuits, and quantified how eigencircuits modify the attraction of their feedforward eigenvector (cf. Sec. 3) by laterally

projecting onto other neurons (cf. Fig. 4C). In the following (Sec. 5), we will show that eigencircuits are indeed stable

fixed points of fully plastic recurrent networks and investigate their stability.

4.3 A note on the choice of weight norm

The choice of the weight norm that is maintained via multiplicative normalization is non-trivial. Biologically we moti-

vated normalization by the competition for a limited amount of synaptic resources. We assumed the simplest case,

where the L1-norm is maintained, and each resource unit translates to one unit of synaptic strength. An alternative

choice would be to maintain the L2-norm. In the variance propagation equation (Eq. 140) this corresponds to p = 2

which becomes

σr =
σE

WE −
σ I

WI . [148]

Following a similar logic as in Section 4.2, the eigencircuit consistency condition for a single inhibitory neuron be-

comes (cf. Eq. 142):

σI =
WIE

1 +WII

(
σ2 + ‖σE ‖2

) 1
2
, [149]

where we once more assumed that all neurons have similar weight norms, W i
AB

≈ WAB, [i. The variance of an

excitatory neuron becomes

σ2
E = Φ2

(
σ2 + ‖σE ‖2

)
= Φ2

(
σ2 + nEσ2

E

)
, [150]

⇒ σ2
E =

Φ2

1 − Φ2nE
σ2 . [151]

For an increasing number of excitatory neurons nE , the firing rate variance of a single excitatory neuron grows and

diverges for Φ2nE = 1. For even larger nE , variances would have to be negative to fulfil the consistency condition,

1Note that for 0 > Φ < 1 there exists a real solution for σE , independent of nE .
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A B C

D

Figure S3: (A) A neuron with firing rate r (gray, center) receives synaptic inputs as part of a recurrent eigencircuit. The neuron receives excitatory

synapses w from a population of input neurons y (dark purple, bottom). Excitatory (purple, triangles) and inhibitory neurons (light purple, circles)

with firing rates, yE, yI, that are part of the same eigencircuit, project laterally onto neuron r via excitatorywE and inhibitorywI synapses. Recurrent

synaptic connections that are not inputs of neuron r are shown in light gray – Not all synaptic connections are shown, for clarity. (B) Recurrently

connected eigencircuit of nE = 1 excitatory neuron (purple triangle) and nI = 2 inhibitory neurons (light purple circles) that are tuned to the

same feedforward eigenvector (dark purple circle, bottom). The standard deviation σ of input firing rates along the input eigenvector propagates

through the network and results in firing rate standard deviations of σE and σI (cf. Eq. 145 f.). (C) Two excitatory neurons (triangles, top) and two

inhibitory neurons (circles, top) in a recurrent circuit receive feedforward excitation from two input neurons (purple and green circles, bottom) that

correspond to two different eigenvectors with eigenvalue λA, λB. Neurons are configured in a fixed point with two eigencircuits, A and B, with

eigencircuit attractions λA
eig
, λB

eig
(cf. Eq. 147). Neurons that are part of the same eigencircuit are recurrently connected to each other. Synaptic

weights between neurons that are tuned to different eigencircuits are zero. The excitatory neuron in eigencircuit A is perturbed in the direction of

eigencircuit B (dashed lines). (D) Equivalent circuit with one excitatory and one inhibitory neuron. We consider a fixed point, where both neurons

are tuned to the same feedforward eigenvector with eigenvalue λ∗. The neurons form an eigencircuit with attraction λ∗
eig
. The excitatory neuron is

perturbed in the direction of another feedforward eigenvector with attraction λ† (dashed line). Firing rates, yE , yI, y, and recurrent and feedforward
synaptic weights, wEE ,wEI,wIE ,wII,wEF , wIF , are shown in black (cf. Eqs.153 & 153). See text for details.

which is not possible. It follows that for sufficiently large nE there exist no fixed points. This is not unique to the

L2-norm but holds for any p > 1. Such norms allow for a larger total synaptic weight (in terms of its L1-norm) when

distributed across multiple synapses. Additional neurons provide additional recurrent synapses, which leads to the

growth of the effective recurrent excitation until activities can no longer be stabilized by recurrent inhibition. For a

suitable choice of the weight norms, Φ can, in principle, become small enough to balance the number of excitatory

neurons in any eigencircuit to maintain positive variances. However, this requires additional fine-tuning and fails

when nE becomes unexpectedly large.

5 E-I networks with fully plastic recurrent connectivity

We now consider fully connected networks of excitatory and inhibitory neurons where all connections, feedforward

and recurrent, are plastic according to the competitive Hebbian learning rule we introduced in Section 2. We will

first show that eigencircuits are fixed points and then consider their stability with respect to a weight perturbation.

Specifically, we would like to knowwhen a neuron from one eigencircuit becomes attracted to a different feedforward

eigenvector. We start with some simplifying assumptions.

Since each neuron can be bidirectionally connected to all other neurons, the dimensionality of the weight dynam-

ics grows quadratically with the number of neurons. We are only interested in the general principles and consider

a simplified circuit of two excitatory and two inhibitory neurons. One possible fixed point configuration is shown in

Figure S3C (without dashed lines), where neurons are configured in two eigencircuits, A,B, with one excitatory and

one inhibitory neuron per eigencircuit1. In this fixed point, all neurons receive feedforward input from a population

of input neurons but synapses that connect neurons of different eigencircuits are zero (cf. Sec. 4). When a neuron

in eigencircuit A is perturbed towards the other eigencircuit B (Fig. S3C, dashed lines), the tuning and the firing

rates of all neurons in eigencircuit A change. However, neurons in eigencircuit B are unaffected because there are

no connections projecting from eigencircuit A to eigencircuit B. Therefore, we only consider the recurrence within

eigencircuit A, and think of input from other eigencircuits as effectively feedforward and static: That is, we construct

an equivalent circuit where we perturb an excitatory neuron that is part of an eigencircuit, ‘∗’, in the direction of

another eigencircuit, ‘†’, that does not contain any neurons and has feedforward attraction equal to the effective

1We will show in Section 5.1 that eigencircuits are in fact fixed points of the weight dynamics.
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attraction of eigencircuit B, that is1 (Fig. S3D)

λ† = λB = λB + λBeig, λ†
eig

= 0. [152]

The configuration and attraction of the perturbed eigencircuit ‘∗’ is equal to eigencircuit A, i.e., λ∗ = λA, λ∗
eig

= λA
eig
.

In Section 5.2.3 we will explain in more detail why these two circuits (Fig. S3C & D) are highly similar with regards to

their stability.

In the equivalent circuit (Fig. S3D), we now consider the generic equilibrium firing rates of the nE = 1 excitatory

and nI = 1 inhibitory neuron without taking any tuning into account (Fig. S3D)

yE = wEF
ᵀ
y +wEEyE −wEIyI, [153]

yI = wIF
ᵀ
y +wIEyE −wIIyI, [154]

where y holds the firing rates of a population of NF input neurons and we did not assume any specific tuning of the

feedforward weights wEF , wIF . Since the network is linear, we can solve for the firing rates:

yE =
1

1 −wEE + wEIwIE

1 +wII

(
wEF

ᵀ − wEIwIF
ᵀ

1 +wII

)
y ≡ aE

ᵀ
y, [155]

yI =
1

1 +wII +
wIEwEI

1 −wEE

(
wIF

ᵀ + wIEwEF
ᵀ

1 −wEE

)
y ≡ aI

ᵀ
y, [156]

where we defined the effective feedforward vectors aE , aI. The weight dynamics is

τ ¤w =

©«
¤wEF

¤wEE

¤wEI

...

ª®®®®®¬
=

©«
yyT yyE −yyI
yE yT yEyE −yEyI
yIyT yIyE −yIyI

0

0
. . .

ª®®®®®¬
©«
wEF

wEE

wEI

...

ª®®®®®¬
−

©«
γE 0 0

0 γE 0

0 0 ρE

0

0
. . .

ª®®®®®¬
©«
wEF

wEE

wEI

...

ª®®®®®¬
, [157]

where ellipsis indicate similar terms for afferent weights of the inhibitory neuron. We define the modified covariance

matrix

C =

©«

〈
yyT

〉
〈yyE〉 − 〈yyI〉〈

yE yT
〉

〈yEyE〉 − 〈yEyI〉〈
yIyT

〉
〈yIyE〉 − 〈yIyI〉

0

0
. . .

ª®®®®®®¬
=

©«

C CaE −CaI
aE

ᵀ
C aE

ᵀ
CaE −aE

ᵀ
CaI

aI
ᵀ
C aI

ᵀ
CaE −aI

ᵀ
CaI

0

0
. . .

ª®®®®®®¬
, [158]

and write the average synaptic change as2 (cf. Eq. 40)

⇒ τ ¤w ≡ Cw − Γw, [159]

where Γ is a diagonal matrix that holds the scalar constraint factors, and τ holds the timescales for excitatory

synapses, τE = 1τE , and inhibitory synapses, τI = 1τI, on the diagonal. We make the simplifying assumption that the

plasticity of excitatory and inhibitory synapses is equally fast, τE = τI = τ. Then τ = τ1, which does not affect the

fixed points or the stability of the system3, and we set τ = 1.
Note that this is a highly non-linear dynamical system since the modified covariance matrix not only depends on

the feedforward inputs y but also on the plastic synaptic weights w, in addition to the weight dependence of the

normalization factors Γ. Next, we show that the eigencircuit configuration we discussed in the introduction to this

section is in fact a fixed point of the weight dynamics.

1See Eq. 147 for the definition of the eigencircuit attraction λeig.
2We omitted the angle notation 〈·〉 to improve readability.
3It does not affect the sign of the eigenvalues of the Jacobian, since τ is always positive. In principle, however, different timescales for

excitatory and inhibitory weights can affect stability (cf. Sec. 2.2).
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5.1 Fixed points

In general, fixed points w∗ must fulfil the following condition

C∗w∗ − Γ∗w∗ !
= 0. [160]

where C∗ is the modified covariance matrix evaluated in the fixed point. We consider the special case when the two

neurons form a single eigencircuit, tuned to the feedforward eigenvector v∗. Then we can write the excitatory and

inhibitory firing rates as1

y∗E = a∗E
ᵀ
y = y

ᵀ
a∗E, a∗E = a∗Ev

∗, [161]

y∗I = a
∗
I

ᵀ
y = y

ᵀ
a∗I , a∗I = a∗I v

∗, [162]

where aE and aI depend on the excitatory and inhibitory weights and can be determined via Eq. 155 & 156. This

demonstrates that when neurons are tuned to the same feedforward eigenvector v∗, their firing rate is proportional to
the projection of the activity vector y onto the eigenvector v∗, and justifies our assumption in Eq. 135. The modified

covariance matrix in the fixed point becomes

C∗ =

©«
C Cv∗a∗

E
−Cv∗a∗

I

a∗
E
v∗
ᵀ
C a∗

E
v∗
ᵀ
Cv∗a∗

E
−a∗

E
v∗
ᵀ
Cv∗a∗

I

a∗
I
v∗
ᵀ
C a∗

I
v∗
ᵀ
Cv∗a∗

E
−a∗

I
v∗
ᵀ
Cv∗a∗

I

0

0
. . .

ª®®®®®¬
=

©«
C λ∗a∗

E
v∗ −λ∗a∗

I
v∗

λ∗a∗
E
v∗
ᵀ

λ∗a∗2
E

−λ∗a∗
E
a∗
I

λ∗a∗
I
v∗
ᵀ

λ∗a∗
I
a∗
E

−λ∗a∗2
I

0

0
. . .

ª®®®®®¬
. [163]

which can be diagonalized by the eigenvector matrix V∗ and its inverse:

V∗ =

©«

V\∗ v∗ v∗a∗
E

v∗a∗
I

0 a∗
E

−1 0

0 a∗
I

0 1

0

0
. . .

ª®®®®®®¬
, V∗−1 = N−1

©«

N V\∗
ᵀ

0 0

v∗
ᵀ

a∗
E

−a∗
I

aEv
∗ᵀ −(1 − a∗2

I
) −a∗

E
a∗
I

−aIv∗
ᵀ −a∗

I
a∗
E

1 + a∗2
E

0

0
. . .

ª®®®®®®®®®¬
, [164]

N ≡ 1 + a∗2E − a∗2I , [165]

where the subscript (·)\∗ indicates that a matrix does not contain an entry that corresponds to the input mode v∗.

In general, C∗ has one diagonal block of dimension D = NF +NE +NI per neuron in the circuit, i.e., NE +NI blocks
2.

Then, C∗ is of dimension (NE + NI)D × (NE + NI)D. Therefore, to diagonalize C∗, we require (NF + NE + NI) (NE + NI)
eigenvectors. Because C∗ has a block diagonal structure (Eq. 163), with the first D×D block driving development of

weights onto the excitatory neuron and the second D × D block driving development of weights onto the inhibitory

neuron, the eigenvector matrix V∗ and its inverse have the same block diagonal structure. Since each block has the

same sub-structure, we only show the first block in Eq. 164. Assuming that all neurons in the circuit are tuned to a

feedforward eigenvector, we have NF + nE + nI eigenvectors of C
∗ per eigencircuit and block, where nE and nI are

the number of excitatory and inhibitory neurons in the respective eigencircuit: NF regular eigenvectors, and nE + nI
null eigenvectors (cf. Sec. 2.1.2). For the specific circuit at hand, we have one excitatory and one inhibitory neuron,

NE = NI = 1, recurrently connected in the same eigencircuit, i.e., there are NF − 1 eigencircuits with nE = nI = 0 and

one eigencircuit with n∗
E
= n∗

I
= 1. The first column of V∗ in Eq. 164 corresponds to the NF − 1 eigencircuits with

nE = nI = 0, i.e., with one regular eigenvector per feedforward eigenvector v , v∗, but without null-eigenvectors.
The corresponding eigenvalues are Λ\∗, which are also eigenvalues of the feedforward covariance matrix C. For the

eigencircuit corresponding to v∗ there are 1+n∗
E
+n∗

I
= 3 eigenvectors of C∗. The first is a regular eigenvector and the

last two are null eigenvectors, where the excitatory feedforward component is cancelled by either a negative lateral

1Note that here the superscript ‘∗’ indicates a variable that is evaluated in the fixed point of the weight dynamics and not a fixed point of the

firing rate activity. Different input patterns y result in different neural activities y∗
E
, y∗

I
.

2Remember that NF is the number of input neurons, and NE ,NI are the total excitatory and inhibitory neurons in the circuit, respectively.
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excitatory component1, or a positive lateral inhibitory component 2. The null eigenvectors have eigenvalues equal

to zero, and the eigenvalue of the regular eigenvector is λ∗ = λ∗ (1 + a∗2
E

− a∗2
I
).

Similar to the feedforward case, arbitrary multiples of the separately normalized parts of eigenvectors of C∗

are fixed points. The only exception is the rightmost null eigenvector (cf. Sec. 2.1.3). There, the inhibitory and

the excitatory weights are aligned such that the post-synaptic activity is zero, which does not allow for arbitrary

scaling of the excitatory and inhibitory weight norms. Inserting these fixed points into Equations 155 & 156, provides

conditions to determine a∗
E
and a∗

I
.

5.2 Stability analysis

We are interested in the stability of the circuit described in the introduction of Section 5 and consider the stability of

a regular eigenvector v∗

w∗ = v∗ =

©«

v∗

a∗
E

a∗
I

v∗

a∗
E

a∗
I

ª®®®®®®®®®¬
, λ∗ = λ∗

(
1 + a∗2E − a∗2I

)
, [166]

This means we do not consider arbitrary scalings of the excitatory and inhibitory parts of eigenvectors of C∗, but
assume that weight norms are fine tuned to match the norms of the excitatory and inhibitory parts of the regular

eigenvector3 v∗.
When are such eigenvectors stable, and when are they attracted to a different input mode? To answer this

question, we consider small fixed point perturbations ∆w(t0), where the excitatory neuron shifts its tuning in the

direction of a different feedforward input eigenvector v†:

∆w(t0) ∝

©«

v†

0

0

0

0

0

ª®®®®®®®®®¬
= V∗e†. [167]

where e† is a vector of zeros with a single non-zero entry that corresponds to the feedforward eigenvector v† (cf.
Eq. 164). The system is stable with respect to a perturbation if the perturbation decays to zero over time. To check

this, we consider the following differential equation that holds for small perturbations (cf. Sec. 1.2.2)

d

dt
∆w(t) = J∗∆w(t), [168]

where J∗ is the Jacobian evaluated in the fixed point. We will consider the dynamics in the non-orthogonal eigenbasis

V∗ of the modified covariance matrix C∗ evaluated in the fixed point w∗ = v∗. Note that V∗ is not time-dependent,

1In our simulations, we constrain synaptic weights to be positive. Then null eigenvectors with negative weights are only relevant in combination

with regular eigenvectors: When a null eigenvector is added to a regular eigenvector, the net synaptic input does not change. For example,

a decrease in recurrent excitation due to a negative excitatory component of the null eigenvector is balanced by an increase in feedforward

excitation.
2We can generalize this approach to the case where neurons are tuned to different feedforward eigenvectors. For example, consider we add

a second excitatory neuron that is, however, tuned to a different feedforward eigenvector, v†. This gives rise to an additional null eigenvector,

(v†ᵀa†
E
, 0, 0, −1, 0T )ᵀ, in the first block of V∗ (Eq. 164). In addition, one of the regular eigenvectors in the first column block of V∗ (Eq. 164)

becomes (v†ᵀ, 0, 0, a†
E
, 0T )ᵀ. Importantly, this is the case for each diagonal block of V∗, i.e., we get D additional null eigenvectors and D altered

regular eigenvectors per additional neuron. This ensures that we always have NE + NI null eigenvectors and NF regular eigenvectors per block,

which allows to diagonalize C∗ which is of dimension (NE + NI )D × (NE + NI )D, independent from the feedforward tunings of neurons – with the

caveat that all neurons must be tuned to feedforward eigenvectors.
3We presume that when considering the stability of non-eigenvector fixed points, it is possible to make a similar argument as in Section 2.2.3

and consider regular eigenvectors of a different modified covariance matrix C′ with adjusted plasticity timescales, kEτE , kIτI. Here we consider

the case of τE = τI and regular eigenvectors of C∗, i.e., kE = kI = 1.
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because it is evaluated in the fixed point. In this static basis, we can express perturbations as

∆wv (t) = V∗−1∆w(t), [169]

⇒ ∆wv (t0) = V∗−1∆w(t0) ∝ e†, [170]

where the subscript (·)v indicates a vector or matrix expressed in this basis. The perturbation dynamics becomes

d

dt
∆wv (t) =

d

dt

(
V∗−1∆w(t)

)
= V∗−1 d

dt
∆w(t) = V∗−1J∗∆w(t) = V∗−1J∗V∗∆wv (t) = J∗v ∆wv (t), [171]

where we defined the transformed Jacobian, J∗v = V
∗−1J∗V∗. Without loss of generality, we assume that eigenvectors

in V∗ are sorted such that the first entry of e† is non-zero, i.e., the first column of V∗ is proportional to the initial

perturbation ∆w(t0) (cf. Eq. 167). Next, we will derive the transformed Jacobian.

5.2.1 The transformed Jacobian

First, we consider the regular Jacobian J∗. We rewrite the dynamics in Eq. 159 as1

¤w =

[
1 − (wEF +wEE)cEE

ᵀ

cEE
ᵀ (wEF +wEE)

− ...
]
Cw, wEF =

©«

wEF

0

0

0

0

0

ª®®®®®®®®®¬
, wEE =

©«

0

wEE

0

0

0

0

ª®®®®®®®®®¬
, cEE =

©«

c

1

0

0

0

0

ª®®®®®®®®®¬
, [172]

where the second term in the bracket corresponds to the normalization of all excitatory synapses onto the excitatory

neuron, additional normalization terms are indicated by ellipsis2 (cf. Eq. 45), and c is a vector of ones. Then the

Jacobian has the following shape (cf. Eq. 29)

J∗ =
d ¤w
dw

�����
∗
=

[
1 −

(v∗
EF

+ v∗
EE
)cEE

ᵀ

cEE
ᵀ (v∗

EF
+ v∗

EE
)
− ...

] (
C∗ − λ∗1 + dC

dw

�����
∗
w∗

)
, [173]

where v∗
EF
, v∗

EE
have the same shape as wEF , wEE in Eq. 172 with entries corresponding to the respective entries

of the regular eigenvector v∗ (cf. Eq. 166). Note that we accounted for the weight dependence of the modified

covariance matrix C which results in the tensor dC /dw. To find the transformed Jacobian V∗−1J∗V∗, we consider

the first bracket:

V∗−1

[
1 −

(v∗
EF

+ v∗
EE
)cEE

ᵀ

cEE
ᵀ (v∗

EF
+ v∗

EE
)
− ...

]
V∗ [174]

The first entry remains equal to the identity matrix, as the eigenvector matrix and its inverse cancel. We consider the

columns v∗
b
of V∗ separately. Then, we can write[

−
(v∗

EF
+ v∗

EE
)cEE

ᵀ

cEE
ᵀ (v∗

EF
+ v∗

EE
)
− ...

]
v∗b = −(v∗EF + v∗EE)h

b
EE

− v∗EIh
b
EI
− (v∗IF + v∗IE)h

b
IE
− v∗IIh

b
II
= −Hbv

∗, [175]

Hb ≡

©«

1hb
EE

hb
EE

hb
EI

1hb
IE

hb
IE

hb
II

ª®®®®®®®®®®¬
, hb

EE
≡

cEE
ᵀ
v∗
b

cEE
ᵀ (v∗

EF
+ v∗

EE
)
, hb

EI
≡
cEI

ᵀ
v∗
b

cEI
ᵀ
v∗
EI

, [176]

1Remember that we set τ = 1.
2In general, there are 2 × (nE + nI ) normalization terms.
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where Hb is a diagonal matrix with entries corresponding to the respective normalization constraint, of which we

give hb
EE

and hb
EI
as examples. Then each column v∗

b
of V∗ is transformed into a multiple of the separately normalized

parts of the fixed point eigenvector v∗ (Eq. 166). After transformation, the bth column becomes

V∗−1Hbv
∗ = N−1

©«

N V\∗
ᵀ

0 0

v∗
ᵀ

a∗
E

−a∗
I

aEv
∗ᵀ −(1 − a∗2

I
) −a∗

E
a∗
I

−aIv∗
ᵀ −a∗

I
a∗
E

1 + a∗2
E

0

0
. . .

ª®®®®®®®®®¬

©«

hb
EE
v∗

hb
EE
a∗
E

hb
EI
a∗
I
...

ª®®®®®®¬
=

©«
0

...

ª®¬, [177]

where, as before, ellipsis indicate potentially non-zero entries. Importantly, after the transformation, the first NF − 1

entries are zero, independent of the column index, b, because v∗ is orthogonal to the columns of V\∗. Overall, we
can write

⇒ V∗−1

[
1 −

(v∗
EF

+ v∗
EE
)cEE

ᵀ

cEE
ᵀ (v∗

EF
+ v∗

EE
)
− ...

]
V∗ =

©«
1 0 0 0

...
...
...
...

0

0
. . .

ª®®®®¬
, [178]

where the block structure arises from the block structure of V∗−1 (cf. Eq. 177).
After transformation, the second bracket of Eq. 173 becomes

V∗−1

(
C∗ − λ∗1 + dC

dw

�����
∗
w∗

)
V∗ =

(
Λ∗ − λ∗1 + V∗−1 dC

dw

�����
∗
w∗V∗

)
. [179]

We next consider the first columns of dC
dw

���
∗
w∗, for which we compute the matrix dC

dwb
EF

����
∗
, where wb

EF
is the bth feed-

forward weight onto the excitatory neuron.

dC

dwb
EF

�����
∗
=

d

dwb
EF

©«

C CaE −CaI
aE

ᵀ
C aE

ᵀ
CaE −aE

ᵀ
CaI

aI
ᵀ
C aI

ᵀ
CaE −aI

ᵀ
CaI

0

0
. . .

ª®®®®®®¬

�����������
∗

[180]

=

©«

0 C
daE
dwb

EF

����
∗

−C daI
dwb

EF

����
∗

daE
ᵀ

dwb
EF

����
∗
C

(
daE

ᵀ

dwb
EF

����
∗
Ca∗

E
+ a∗

E

ᵀ
C

daE
dwb

EF

����
∗

)
−

(
daE

ᵀ

dwb
EF

����
∗
Ca∗

I
+ a∗

E

ᵀ
C

daI
dwb

EF

����
∗

)
daI
ᵀ

dwb
EF

����
∗
C

(
daI
ᵀ

dwb
EF

����
∗
Ca∗

E
+ a∗

I

ᵀ
C

daE
dwb

EF

����
∗

)
−

(
daI
ᵀ

dwb
EF

����
∗
Ca∗

I
+ a∗

I

ᵀ
C

daI
dwb

EF

����
∗

) 0

0
. . .

ª®®®®®®®®®®®¬
, [181]

where we used the definition of C from Eq. 158. The vectors aE and aI are defined in Eq. 155 & 156. It follows:

daE

dwb
EF

�����
∗
=

1

1 −w∗
EE

+
w∗
EI
w∗
IE

1 +w∗
II

eb ≡ µEeb, [182]

daI

dwb
EF

�����
∗
=

1

1 +w∗
II
+

w∗
IE
w∗
EI

1 −w∗
EE

w∗
IE

1 −w∗
EE

eb ≡ µIeb, [183]

where eb is a vector of dimension NF with entries equal to zero, except for the bth entry equal to one. Additionally,

we have (cf. Eqs.161 & 162)

Ca∗E = λ∗a∗Ev
∗, Ca∗I = λ∗a∗I v

∗, [184]
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which results in

⇒ dC

dwb
EF

�����
∗
=

©«

0 µECeb −µICeb

µEeb
ᵀ
C 2λ∗a∗

E
µEv

∗ᵀeb −λ∗ (µEa∗E + µIa
∗
E
)v∗ᵀeb

µIeb
ᵀ
C λ∗ (µIa∗E + µEa

∗
I
)v∗ᵀeb 2λ∗a∗

I
µIv

∗ᵀeb

0

0
. . .

ª®®®®®®®®¬
, [185]

⇒ dC

dwb
EF

�����
∗
w∗ =

©«
βECeb

g1v
∗ᵀeb

g2v
∗ᵀeb
0

ª®®®®¬
, w∗ = v∗ =

©«
v∗

w∗
EE

w∗
EI
...

ª®®®®®¬
, βE = µEw

∗
EE − µIw

∗
EI, [186]

where g( ·) are scalars.

⇒ dC

dwEF

�����
∗
w∗ =

©«
βEC

g1v
∗ᵀ

g2v
∗ᵀ

0

ª®®®®¬
. [187]

We find other columns in a similar fashion and write

⇒ dC

dw

�����
∗
w∗ =

©«
βEC g3v

∗ g6v
∗

g1v
∗ᵀ g4 g7

g2v
∗ᵀ g5 g8

0

0
. . .

ª®®®®®¬
, [188]

where, again, g( ·) are scalars. After applying the transformation, we get

V∗−1 dC

dw

�����
∗
w∗V∗ = V∗−1

©«
βEC g3v

∗ g6v
∗

g1v
∗ᵀ g4 g7

g2v
∗ᵀ g5 g8

0

0
. . .

ª®®®®®¬
©«

V\∗ v∗ v∗a∗
E

v∗a∗
I

0 a∗
E

−1 0

0 a∗
I

0 1

0

0
. . .

ª®®®®®®¬
[189]

= V∗−1

©«

βECV\∗ g9v
∗ g12v

∗ g15v
∗

0 g10 g13 g16

0 g11 g14 g17

0

0
. . .

ª®®®®®®¬
[190]

= N−1

©«

N V\∗
ᵀ

0 0

v∗
ᵀ

a∗
E

−a∗
I

aEv
∗ᵀ −(1 − a∗2

I
) −a∗

E
a∗
I

−aIv∗
ᵀ −a∗

I
a∗
E

1 + a∗2
E

0

0
. . .

ª®®®®®®®®®¬

©«

βEV\∗Λ\∗ g9v
∗ g12v

∗ g15v
∗

0 g10 g13 g16

0 g11 g14 g17

0

0
. . .

ª®®®®®®¬
[191]

=

©«

βEΛ\∗ 0 0 0

0 g18 g21 g24

0 g19 g22 g25

0 g20 g23 g26

0

0
. . .

ª®®®®®®®®®¬
. [192]
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The fully transformed Jacobian is (cf. Eq. 179)

J∗v = V
∗−1J∗V∗ = V∗−1

[
1 −

(v∗
EF

+ v∗
EE
)cEE

ᵀ

cEE
ᵀ (v∗

EF
+ v∗

EE
)
− ...

]
V∗

(
Λ∗ − λ∗1 + V∗−1 dC

dw

�����
∗
w∗V∗

)
[193]

Finally, by inserting Eq. 178 & 192 we find

V∗−1J∗V∗ =

©«
1 0 0 0

...
...
...
...

0

0
. . .

ª®®®®¬
©«
Λ∗ − λ∗1 +

©«

βEΛ\∗ 0 0 0

0 g18 g21 g24

0 g19 g22 g25

0 g20 g23 g26

0

0
. . .

ª®®®®®®®®®¬

ª®®®®®®®®®¬
. [194]

⇒ J∗v =

©«
(
Λ\∗ − λ∗1 + βEΛ\∗

)
0 0 0

...
...
...
...

0

0
. . .

ª®®®®¬
, [195]

where Λ\∗ contains eigenvalues of C
∗ that correspond to regular, non-fixed point eigenvectors.1

5.2.2 Stability conditions

The dynamics of a general fixed point perturbation ∆wv in the eigenbasis of C
∗ is (cf. Eq.171)

d

dt
∆wv = J

∗
v ∆wv =

©«
(
Λ\∗ − λ∗1 + βEΛ\∗

)
0 0

...
...
...

0

0
. . .

ª®®®®¬
∆wv . [196]

Note that the transformed Jacobian (Eq. 195) has a triangular block structure, and each row of J∗v corresponds to the
growth of a perturbation in the direction of a different eigenvector of C∗. We are only interested in perturbations that

grow in the direction of a non-fixed point feedforward eigenvector, V\∗. Therefore, we focus on the first rows of J∗v,
which correspond to growth in these directions. Except for the first diagonal block, these rows are zero. It follows

that perturbations ∆wv (t0) that do not already contain components in the direction of non-fixed point eigenvectors,

also do not develop such components in their later dynamics. In contrast, perturbations in the direction of a non-

fixed point feedforward input mode, e.g., ∆wv ∝ e†, can induce perturbations within the original eigencircuit that

corresponds to the feedforward eigenvector v∗ 2. For example, a decrease in feedforward and recurrent excitatory

synaptic weights within the eigencircuit balances the increase of feedforward excitatory synaptic weights due to

the perturbation towards a different eigencircuit, to maintain the weight norm. However, as explained above, these

‘second-order’ perturbations, without components in the direction of non-fixed point feedforward eigenvectors, V\∗,
are contained within the eigencircuit, i.e., they can not induce subsequent perturbations in the direction of non-fixed

point feedforward input modes, V\∗. Therefore, to answer the question of when an eigencircuit is stable, we only

consider the dynamics along the direction of the original perturbation (cf. Eq.167) by projecting the dynamics onto

the perturbation vector at time zero, ∆wv (t0) ∝ e† (cf. Eq.170):

e†
ᵀ d

dt
∆wv =

(
λ† − λ∗ + βEλ

†
)
e†
ᵀ
∆wv, [197]

which provides the eigencircuit stability condition for the excitatory neuron

λ† − λ∗ + βEλ
† < 0 . [198]

1Note that in our specific network the top left block of Λ∗ is equal to Λ\∗, i.e., Λ\∗ = Λ\∗, because there are no neurons tuned to the respective

feedforward eigenvectors. In particular, λ† = λ† (cf. Eq. 152)
2This is due to the potentially non-zero elements in the block below the top left diagonal block of J∗v in Equation 196.
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Figure S4: (A) Two excitatory neurons (triangles) are tuned to two different, but equally attractive input modes (circles, green and purple). (B)

The same circuit as in A, unfolded to highlight pre-synaptic partners. Both input modes are balanced in their attraction. (C) Perturbing the purple

excitatory neuron towards the green input mode (dashed lines) shifts its tuning (dark blue) such that it now responds to both the green and the

purple input modes. (D) The unfolded circuit from C. Due to the perturbation, the green input mode is now more attractive, and the previously

purple excitatory neuron shifts its tuning. See text for details.

If Eq. 198 holds, perturbations in the direction of non-fixed point eigenvectors decay to zero, and the eigencircuit is

stable. For βE we have (cf. Eqs. 186 & 182 f.)

βE =
1

1 −w∗
EE

+
w∗
EI
w∗
IE

1 +w∗
II

w∗
EE − 1

1 +w∗
II
+

w∗
IE
w∗
EI

1 −w∗
EE

(
w∗
EI
w∗
IE

1 −w∗
EE

)
. [199]

From Eq. 155 & 156 we find

dyE

d(wEF
ᵀ
y)

����
∗
=

1

1 −w∗
EE

+
w∗
EI
w∗
IE

1 +w∗
II

, [200]

dyI

d(wEF
ᵀ
y)

����
∗
=

1

1 +w∗
II
+

w∗
IE
w∗
EI

1 −w∗
EE

w∗
IE

1 −w∗
EE

, [201]

and we get

⇒ βE =
dyE

d(wEF
ᵀ
y)

����
∗
w∗
EE − dyI

d(wEF
ᵀ
y)

����
∗
w∗
EI . [202]

Following the same framework, we find the stability condition when perturbing the inhibitory neuron:

λ† − λ∗ + βIλ
† < 0 , [203]

⇒ βI =
dyE

d(wIF
ᵀ
y)

����
∗
w∗
IE − dyI

d(wIF
ᵀ
y)

����
∗
w∗
II . [204]

We will now interpret these results.

5.2.3 Eigencircuit stability depends on recurrent connectivity

We first consider the casewhen the effective attraction of all eigencircuits is the same, i.e., λ∗ = λ† (cf. Eqs. 198 & 203).
Then the stability is fully determined by βE , and βI. In feedforward circuits we have not found any β -terms, because

in that case, the modified covariance matrix does not depend on any plastic synaptic weights (cf. Eq. 51 & Sec. 2.2).

This is not the case in recurrent circuits where the perturbation induces a change in the tuning of laterally projecting

neurons.
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To build some intuition, we consider a simple example: Think of a recurrent network of two excitatory neurons

with identical weight norms , and an external population of excitatory neurons projecting feedforward input to both.

In the fixed point, the neurons are tuned to two different feedforward input eigenvectors of equal attraction and

are recurrently connected to themselves but not each other (Fig. S4A). Then the effective attraction of the two

eigencircuits is the same. In general, neurons receive synaptic inputs, but have no information about the overall

network structure, e.g., which synaptic inputs are feedforward or recurrent. Taking this perspective, we unfold the

recurrent network and observe that the effective mode attraction is a combination of the feedforward input and

the recurrent self-excitation (Fig. S4B). When we perturb one neuron towards the opposing input mode (Fig. S4C,

dashed lines), the tuning of the perturbed neuron changes slightly in the direction of that mode (Fig. S4C, dark blue).

From the perspective of the perturbed neuron, this tuning change leads to an attraction increase of the opposing

eigencircuit, which is now more attractive than the original eigencircuit of the perturbed neuron (Fig. S4D), and the

perturbation grows in the direction of the more attractive mode – the fixed point is unstable. Similarly, if the neurons

were inhibitory instead, the perturbation would decrease the attraction towards the opposite input mode which would

stabilize the network.

In our mathematical analysis of the circuit shown in Figure S3D, the attraction increase or decrease due to the

tuning change of recurrently projecting neurons is reflected in the β -terms in Equations 198 & 203, which emerge

from the weight dependence of the modified covariance matrix C (cf. Eq. 173). For example, when perturbing the

excitatory neuron, the increase in attraction from the perspective of the perturbed neuron is (cf. Eq. 198)

βEλ
† =

(
dyE

d(wEF
ᵀ
y)

����
∗
λ†

)
w∗
EE −

(
dyI

d(wEF
ᵀ
y)

����
∗
λ†

)
w∗
EI, [205]

where the brackets reflect the tuning shifts of the excitatory and the inhibitory neuron1 in response to the perturbation

ofwEF in the direction of v
†, which is then weighted by the respective synaptic connection onto the excitatory neuron,

w∗
EE
, w∗

EI
. When the inhibitory neuron is perturbed instead, the terms for βI follow the same logic (cf. Eq. 204).

Without going through the lengthy mathematical derivation, we now give some intuition about β -terms of the

network perturbation in Figure S3C. In the fixed point, the perturbed excitatory neuron receives recurrent input from

all neurons in its eigencircuit, including itself. In the following, superscripts indicate the corresponding eigencircuit,

A or B. Then, as for the equivalent circuit (cf. Fig. S3D), βA
E
comprises two terms, one due to the tuning shift of yA

E
,

and a second due to the tuning shift of yA
I
. Assuming the same weight norms, this is exactly equal to the βE for

the equivalent circuit (Eq. 198). Different from βE , β
A
E
is weighted with the effective attraction λB = λB + λB

eig
, instead

of only the feedforward attraction (cf. λ† in Eq. 205), because the perturbation comprises not only the feedforward

eigenvector component but the whole eigencircuit (cf. dashed lines in Figs. S3C & D). This is why, for the equivalent

circuit, we chose the feedforward attraction λ† = λB = λB + λB
eig

(Eq. 152). Then, the diagonal entries corresponding

to the respective perturbations in the upper left blocks of the transformed Jacobians are the same2 (cf. Eq. 195),

i.e.,

λ† − λ∗ + βEλ
† = λB − λA + βB

E λ
B. [206]

We find that perturbations in both circuits initially follow the same dynamics, while the later dynamics diverges: At

time t0, there are no lateral projections from eigencircuit B towards eigencircuit A (cf. Fig. S3C), since in the fixed

point there are no recurrent connections between eigencircuits (cf. Sec. 4), and the perturbation at time t0 only

introduces connections from eigencircuit B onto eigencircuit A. However, as we just discussed, the perturbation

introduces a tuning shift in neurons of eigencircuit A in the direction of eigencircuit B. This shift leads to non-zero

correlations between neurons of both eigencircuits, and synaptic weights from eigencircuit A onto eigencircuitB start

to grow. These growing synapses shift the attraction of neurons in eigencircuit B and thus impact the dynamics of

perturbation components in the direction of eigencircuit B. Therefore, the transformed Jacobian of the original circuit

(Fig. S3C) has a more complex structure than the Jacobian for the equivalent circuit3. However, since we consider

an initial perturbation that is aligned with a regular eigenvector, i.e., ∆wv (t0) ∝ eB is one-hot (cf. Eq. 170), the top

left diagonal block of the Jacobian still determines the initial dynamics4.

1Note that also the tuning of the inhibitory neuron changes, although it is not directly perturbed.
2Recall that λ†

eig
= 0 and, therefore, λ† = λ† (Eq. 152).

3The Jacobian of the original circuit (Fig. S3C) has additional entries to the right of the top left diagonal block in Equation 196 that are non-zero.

These non-zero entries result in the growth of synapses of yA
E
in the direction of eigencircuit B due to ‘second-order’ perturbations of recurrent

synapses from eigencircuit A to eigencircuit B.
4Non-zero entries of the Jacobian to the right of the top left diagonal block are cancelled by the zero entries in the initial perturbation vector

∆wv (t0 ) (cf. Eq. 196).
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In summary, recurrent synapses can stabilize or destabilize a circuit with respect to small perturbations away

from a fixed point. These stabilizing and destabilizing effects are described by β -terms that depend on the specific

weight configuration in the fixed point (cf. Eq. 199), which again depends on the weight norms that constrain the

total synaptic weights. In the following, we consider the case when synaptic weights are tuned such that β -terms

are small. In the equivalent circuit (Fig. S3D) this is the case when the influence of the tuning shifts of the excitatory

and the inhibitory neuron balance each other1 (cf. the first and second terms in Eqs. 202 & 204).

5.2.4 Decorrelation condition

We now consider how neurons self-organize to represent all parts of their input space instead of clustering all their

tuning curves around a dominant input mode. We consider the fixed point stability of different eigencircuit config-

urations. In particular, we consider the case when recurrent connectivity motifs do not influence the stability of an

eigencircuit. The β -terms in Equations 198 & 203 describe the change in the covariance structure of the network due

to a small perturbation (cf. Sec. 5.2.3). Since we consider the stability of a single neuron in a larger network of many

neurons, NE,NI � 1, these changes in the covariance structure are small, and the dynamics is dominated by the

total attractions of the eigencircuits. Therefore, in the following, we consider βE and βI to be small, approximately

equal to zero This can be achieved by a suitable choice of weight norms2. Then, all eigencircuits are marginally

stable when they are equally attractive, i.e., (cf. Eqs. 198 & 203 for βE/I = 0)

λa = λa + λa
eig

!
= λb, [a,b. [207]

For homogeneous input spaces, where the feedforward attraction of all input modes is the same, i.e., λa = λb =
λ, [a,b, the only alternative stable configuration is when all neurons are tuned to the same feedforward input mode

and form a single eigencircuit. Such a configuration does not reflect the tunings of biological neural populations,

where all parts of the input space are represented. To prevent such a global clustering of neural tunings, we require

that the corresponding eigencircuit is unstable. When all β -terms are approximately zero, this is the case when the

effective attraction of the only occupied eigencircuit, λ∗, is smaller than the attraction of one of theNF−1 unoccupied3
input modes, λ† = λ† (cf. Eq. 198 & 203):

λ∗ < λ†, [208]

⇒
∑
i

σ2
E,i −

∑
I

σ2
I,j + λ < λ, [209]

⇒ NEσ
2
E − NIσ

2
I < 0, [210]

⇒ NEσ
2
E < NIσ

2
I , [211]

where σ2
E
, σ2

I
are the average variance, and NE , NI the total number of inhibitory and excitatory neurons. When this

condition is satisfied, the only stable solution is when the effective attraction of all eigencircuits is identical. The

simplest configuration where this is the case is when each eigencircuit contains the same number of excitatory and

inhibitory neurons.

6 Movie captions

Movie S1: Decorrelation of feedforward tuning curves of excitatory neurons in plastic recurrent networks. Development of feedforward

tuning curves of NE = 10 excitatory neurons (cf. Figs. 3A & B). Synaptic weights were initialized randomly. Different color shades indicate weights

of different post-synaptic neurons.

1Note that the term in Equation 204 that corresponds to the tuning shift of the inhibitory neuron can be positive since dyI /d(wIF
ᵀ
y) is negative

when the circuit is inhibition stabilized (6), i.e., wEE > 1. In that case, the first term in Equation 204 is negative, since dyE /d(wIF
ᵀ
y) is also

negative (cf. Eqs.155 & 156).
2See Section 5.2.3 for a discussion of the case βE/I , 0.
3An unoccupied input mode corresponds to λ†

eig
= 0 (cf. Eq. 147).
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Movie S2: Decorrelation of feedforward tuning curves of inhibitory neurons in plastic recurrent networks. Development of feedforward

tuning curves of NI = 10 inhibitory neurons (cf. Figs. 3A & B). Synaptic weights were initialized randomly. Different color shades indicate weights

of different post-synaptic neurons.
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