
Input-dominated Hebbian learning enables
image-computable E-I networks

Recurrent network models of excitatory (E) and inhibitory (I) neurons with supralinear activation functions
have successfully explained several cortical computations, including response normalization and surround
suppression.1,2 Unlike more abstract approaches,3,4 such networks allow direct comparisons with experimen-
tally measured neural activities and synaptic strengths. However, the scope of these networks remained lim-
ited as their connectivity needed to be designed by hand or fitted by complexmachine learning algorithms to
yield stable activity and computations.5,6 Here we present a method to efficiently construct stable recurrent
E-I networks with connectivity that reflect the statistical regularities of high-dimensional natural images
using a diverse set of feedforward receptive fields. We build on recent work that demonstrated the emer-
gence of functional E-I networks via online Hebbian learning from an input population with homogeneous
tuning curves,7 and employ a simple covariance plasticity rule at all recurrent synapses without constraints
on input tuning. When the network’s activity is dominated by feedforward inputs, we can solve for the
steady-state weight matrix analytically. This allows us to construct stable networks with recurrent weights
adapted to complex input statistics without hand-tuning or numerical optimization. We demonstrate our
approach by constructing two fully connected networks of 6,500 neurons and >40 million synapses each,
encoding natural image datasets resembling the upper and lower visual field of mice, respectively.8 We found
that correlations between cross-oriented receptive fields in the upper visual field were weaker than those in
the lower visual field, while iso-oriented receptive fields were more strongly correlated in the upper visual
field. These statistics became reflected in the networks’ synaptic connectivity and predicted weaker cross-
orientation, but stronger iso-orientation surround suppression in the lower compared to the upper visual
field. In summary, our method enables image-computable models of stable, supralinear E-I networks that
allow for detailed comparison with heterogeneous cortical circuits.

We consider E-I rate networks with dynamics

ẏ ∝ −y + [Wy +Hz]◦n+ , [x]+ = max(x , 0), (1)
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where bold symbols denotematrices and vectors, and
[·]◦n denotes the element-wise power. The network
receives external input z via fixed feedforward recep-
tive fields (RFs)H. We assume a competitive Hebbian
learning rule at synapses between neurons i, j of type
A,B
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where y are firing rates with means y . The scalar γ
maintains the total synaptic weight of all recurrent
excitatory or inhibitory inputs7 ,9 such that∑

j

wAB
ij = WAB, W ≡

(
WEE WEI
WIE WII

)
, (4)

while we set negative weights to zero, adhering to
Dale’s law. Following previous work,10 we make
the assumption that during learning, the network is
input-dominated and we further ignore the neuronal
nonlinearity, such that y ∝ [Hz]+ ≡ p. The expected
synaptic weight change becomes (cf. Eq. 3):

⟨Ẇ⟩ ∝ C− ΓW, C = ⟨ppT⟩ − ⟨p⟩⟨pT⟩, (5)

whereC is a covariance matrix, and the diagonal ma-
trix Γ holds the appropriate γAB

i normalization fac-
tors. We make the simplifying assumption that for
each excitatory neuron there is an inhibitory neuron

with the same receptive field, i.e., HE = HI ≡ H, re-
sembling a cortical microcolumn. Then C becomes a
2 × 2 block matrix with four identical submatrices,
so that the learning fixed point, for which ⟨Ẇ∗⟩ = 0,
becomes a Kronecker product

W∗ = W ⊗ C+, (6)

whereC+ is the positive part of theC-submatrix, nor-
malized such that each row sums to one and the
total synaptic weights are set by the 2 × 2 matrix
W . Synaptic weights that connect two neurons with
negative covariance decay to zero due to Dale’s law.
The recurrent connectivity within each E-I microcol-
umn becomes proportional to W , and the activity
of the full network remains bounded if activity in
each microcolumn remains bounded, which can be
analysed analytically.1,11 To load a set of natural im-
ages into a network, we define a fixed set of receptive
fields HT =

(
h1,h2, …

)
, compute response patterns

pi = [Hzi]+ for each input image zi , and set the re-
current weight matrix according to Eq. 6 (Fig. 1a, b).
The statistics of visual stimuli are not homogeneous
across the visual field. For example, tree branches in
the upper visual field of wild mice induce spatial cor-
relations across large distances, while grass blades in
the lower visual field imply more short-ranged corre-
lations (Fig. 1b) (we expect similar differences in cor-
relations for lab-grownmice). These statistics should
be reflected in the connectivity between neurons in
the visual cortex and lead to distinct response pat-
terns when a stimulus is presented in either the up-
per or the lower visual field.
To test this hypothesis, we defined a set of oriented
receptive fields that varied in their location, orien-
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Figure 1. a, Network construction. Top: computation of response covariances in the input-dominated
learning phase. Center: evolving network units to E-I column via Kronecker product of weight norm matrix
and normalized covariance matrix. Bottom: full E-I network (some synapses not drawn for clarity). b, Upper
(blue) and lower (green) regions of the visual field differ in their image statistics (tree branches compared to
grass). Bottom: example natural images (500× 500 pixels) characterising the upper and lower visual field in
mice,8 below – whitened example patches zi (28 × 28 pixels) used for network construction. c, Overlapping
Gabor receptive fields arranged in a centre (dashed square) surround pattern. d, Rectified response corre-
lation between different receptive fields in the upper (centre) and lower (right) visual field. RFs are sorted
according to their orientation and location tuning, indicated by coloured arrows (left). Correlations were
averaged and renormalized over RFs with different phases. e, Response normalization in the upper (top) and
lower (bottom) visual field. Two different test gratings of different orientations and contrasts (right) were
presented to the network either separately (orange and purple) or overlayed (dark blue). For the overlayed
grating mostly the higher contrast orientation is encoded in the network’s population response. f, Surround
suppression in the upper (blue) and lower (green) visual field. Different orientations and contrasts in the
surround result in different suppression levels of activity in a neuron tuned to the centre orientation. Firing
rates are normalized to responses at zero surround contrast).

tation, and phase tuning (Fig. 1c). We loaded two
image sets corresponding to the upper and lower vi-
sual field8 into two separate networks. We observed
that neurons with RFs in the upper visual field were
strongly connected to neurons with iso-oriented re-
ceptive fields in the surrounding regions, while neu-
rons with RFs in the lower visual field showedweaker
orientation preference in their recurrent connectivity
(Fig. 1d).
This difference in connectivity between networks
encoding the upper and lower visual fields is re-
flected in a difference in circuit dynamics. Af-
ter initiation, we observed the networks’ responses
to test stimuli while activities progressed outside
the input-dominated regime (according to Eq. 1).
While both networks showed response normaliza-
tion (Fig. 1e) and surround suppression (Fig. 1f),
in accordance with experimental results,4 the net-
work trained on input from the upper visual field
showed stronger iso-oriented surround suppression
but weaker response normalization compared to the
network trained on input from the lower visual field.

While these results demonstrate the usefulness of
our approach to model heterogeneous circuits in the
visual cortex, our method generalizes naturally to ar-
bitrary input statistics and thus paves the way for a
new generation of functional recurrent E-I network
models of unprecedented scale and biological real-
ism.
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