
Inhibition-stabilized supralinear memory ensembles
The hippocampus plays a central role in memory formation and retrieval. In order to avoid deleterious in-
terference between stored and ongoing experience, theoretical considerations require a separation between
phases of memory encoding and recall within the same neural circuit, putatively controlled by hippocampal
theta oscillations.1 However, the neural mechanisms subserving this separation remain unknown. Classi-
cal models either remain mute about these mechanisms,2 or assume purpose-built neuromodulatory inter-
actions that are in conflict with biologically realistic timescales and specificity of synaptic modulation.3,4
In addition, computational models of memory recall typically do not consider inhibitory neurons at all,2,5
or only for stabilizing the network globally.6,7 In contrast, recent experiments suggest that structured in-
hibitory connections are crucial for memory retrieval.8,9 Here, we develop an excitatory-inhibitory network
model with structured connectivity between units conforming to a canonical circuit motif, the inhibition-
stabilized supralinear network.10,11 This network naturally gives rise to a separation between phases that are
ideal for either the recall or the storage of memories, solely determined by the input strength of an external
memory cue. For weak input, the cued memory is recalled, and neurons are strongly stabilized by inhibi-
tion. For strong input, the external cue is encoded, while inhibition stabilization is paradoxically weaker.
Our model only requires a Hebbian and an anti-Hebbian form of biologically plausible plasticity that re-
spectively store the positive and negative parts of the pattern covariance matrix. Specifically, patterns are
stored in an input-dominated encoding regime via synapse-type-specific competitive Hebbian plasticity,12
for the positive part, and—motivated by experimental results13,14—via anti-Hebbian plasticity at excitatory-
to-inhibitory synapses, for the negative part. The resulting recurrent connectivity is highly structured and
consistent with Dale’s law. In summary, we present a model of hippocampal memory recall that meets key
biological constraints and reveals a novel mechanism for alternating between storage and recall within the
same circuit.

We consider E-I rate networks with dynamics

ṙ ∝ −r + [Wr + h]◦n+ , [x]+ = max(x , 0), (1)
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where bold symbols denotematrices and vectors, and
[·]◦n denotes the element-wise raising to power n. We
split synapses into two types W = W+ + W9. For
synapses w+AB

ij connecting neurons i, j of type A,B,
we assume a synapse-type-specific competitive Heb-
bian learning rule12
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where r are firing rates with means r . The scalar γ
maintains the total synaptic weight of all recurrent
excitatory or inhibitory inputs such that∑
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while we set negative weights to zero, adhering to
Dale’s law. We make the assumption that during
memory storage, the network is dominated by the
input pattern h = p and we further ignore the neu-
ronal non-linearity, such that r ∝ p. The expected
synaptic weight change becomes (cf. Eq. 3):

⟨Ẇ+⟩ ∝ C− Γ+W+, C = ⟨ppT⟩ − ⟨p⟩⟨pT⟩, (5)

where C is the pattern covariance matrix, and the di-
agonal matrix Γ holds the appropriate γ+A

i . We make
the simplifying assumption that for each excitatory
neuron there is an inhibitory neuron that receives the

same input, i.e., hE = hI (cf. Fig. 1A). ThenC becomes
a 2× 2 block matrix with four identical submatrices,
so that the learning fixed point, for which ⟨Ẇ+∗⟩ = 0,
becomes a Kronecker product

W+∗ = W+ ⊗ C+, (6)

whereC+ is the positive part of theC-submatrix, nor-
malized such that each row sums to one and the to-
tal synaptic weights are set by the 2× 2 matrixW+.
Synaptic weights that connect two neuronswith neg-
ative covariance decay to zero.
Negative covariances are instead camptured by
synapses W9, which are plastic according to an
anti-Hebbian learning rule mediated by calcium-
permeable AMPA receptors at excitatory-to-
inhibitory synapses13,14 (Fig. 1B):

ẇ9IE
ij ∝ −
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)
rEj − γ9I

i w
9IE
ij , (7)

with γ9A
i , and W9 below, defined analogously to

competitive Hebbian plasticity (cf. Eqs. 3 & 4). From
the entries ofW9, we chose onlyW9

IE to be non-zero,
since this form of plasticity has been exclusively re-
ported at excitatory-to-inhibitory synapses.13,14

We can solve the weight dynamics analytically which
results in the following fixed point

W∗ = W+∗ +W9∗ = W+ ⊗ C+ +W9 ⊗ C9. (8)

Our plasticity rule predicts, that a presynaptic excita-
tory neuron and a postsynaptic inhibitory neuron are
either connected via a Hebbian or an anti-Hebbian
synapse, reflecting either a positive or negative co-
variance, potentially mirrored by the presence or ab-
sence of calcium-permeable AMPA receptors, medi-
ating a form of meta-plasticity.15
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Figure 1. (A) 20× 20 binary noise patterns are memorized by a recurrent network model of 400 excitatory,
rE , and 400 inhibitory units, rI , and are recalled when memory cues of different signal-to-noise ratios (SNRs)
are presented. Positive correlations are learned via competitive Hebbian plasticity at all recurrent synapse
types.12 (B) Negative correlations are learned via competitive anti-Hebbian plasticity at excitatory synapses
onto inhibitory neurons: Calcium-permeable AMPA receptors allow for calcium influx during pre-synaptic
stimulation while the postsynaptic neuron is at rest, triggering long-term potentiation (LTP).13 When the
postsynapse is depolarized, polyamine blockage prevents LTP and potentially allows for synaptic depres-
sion (LTD).14 Top right: Resulting negative covariance plasticity rule. (C) Raster plot of normalized (norm.)
steady state membrane potentials during cue presentation at different input strengths. Neurons that are
part of the cued memory are sorted to the bottom. The network switches from a recall phase (purple) to an
encoding phase (blue), depending on the strength of the input cue. Right: representation of the cued mem-
ory (top) and the network activity in the two regimes (bottom), at 20 and 100 input strength (vertical lines),
respectively. (D) Cosine similarity between membrane potentials of the excitatory population and the cued
memory (solid, black), non-cued memories (solid, grey), and the recall cue (dashed, black). Same data as in
C. (E) Same as in D, averaged over 20 stored memories times 5 different noise cues. Shaded regions span
two standard deviations. (F) Average excitatory (E) and inhibitory (I) population firing rates for neurons in
C. (G) Same as E, for different SNRs (shades of green). Only the average overlap with the cued memories
is shown. Means and standard deviations for an input strength of 20 (vertical dashed line) are presented in
(H). (I) Average population firing rates of inhibitory neurons that are either part of a cued memory pattern
(solid line) or not (dashed line). The recall cue is presented at either 20 (purple) or 100 (blue) input strength.
Inhibitory neurons received additional, unspecific external stimulation, starting at time zero.

We construct a network of 400 E-I modules and store
20 binary patterns with 80 active units per pattern
(Fig.1A, right). To obtain a noisy memory cue, we
linearly mix a memory pattern with a noise pattern.
We present this cue to the network at different in-
put strengths and record its steady state membrane
potentials (Fig.1A, left). For low input strengths,
the network remains silent, before activities discon-
tinuously increase and represent the cued memory
(cf. Fig.1C & F ). For increasing input strengths,
the network enters an encoding phase, where the
noisy input cue is represented, suggesting a regime
where input-dominated learning can take place, po-
tentially via behavioral timescale synaptic plastic-
ity at the troughs of theta cycles,16,17 facilitated by
slower cholinergic modulation.3,4

We quantify memory recall and encoding bymeasur-
ing the similarity betweenmembrane potentials, and
the stored memories, or the input cue, respectively
(Fig.1D). We find memory recall to be robust with re-
spect to differentmemory patterns, and cues (Fig.1E),
as well as different cue noise levels (Fig.1G & H).
The network is inhibition-stabilized and exhibits the

paradoxical effect:18 When inhibitory neurons are
perturbed during stimulationwith amemory cue, the
activity of inhibitory memory neurons paradoxically
decreases (Fig.1I). We quantified the extent of this
decrease in the recall and encoding regimes and find
a weaker decrease at higher input levels, contrasting
results in less structured supralinear networks.19,20
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