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Structured E-I networks for movement generation

A salient property of neural population dynamics in motor cortex is the separation of neural activities into
different subspaces, respectively traversed by the population during the preparation or execution of a move-
ment pattern. Previous computational models used stabilized excitatory-inhibitory (E-1) networks to explain
this separation. For these networks, inputs and readouts are trained to map target trajectories to the rich
neural dynamics of a non-normal, stabilized E-I reservoir, which otherwise does not have any structured
connectivity. Here, we instead suggest that motor circuits are much more regular, with different subspaces
being implemented by specific cell types. We construct an E-I circuit that strongly amplifies activity in a
preparatory subspace into an oscillatory subspace, corresponding to the difference and sum activity modes
of recurrently connected excitatory and inhibitory neurons, respectively. Oscillatory dynamics is realized
via uni-directional connections between excitatory neuron sub-types, reflecting the well-known connectiv-
ity structure between intratelencephalic (IT) and pyramidal tract (PT) neurons in cortical layer 5. Motivated
by recent reports of a discrete set of temporal frequencies in motor-cortical neural activity during movement
generation, we suggest that neurons precisely balance their synaptic inputs from different neuron subtypes
to generate a limited number oscillatory modes. These modes provide different temporal basis functions
whose weighted activation allows the composition of specific movement patterns. We explain how different
oscillatory modes can be represented in the network in a distributed manner, while maintaining Dale’s law,
and demonstrate how complex movement trajectories can be triggered by the stimulation of even a single
neuron, in line with experimental evidence. In summary, we present a general framework for the implemen-
tation of motor-cortical dynamics in recurrent networks. We suggest that oscillatory modes are realized
by defined cell types and show how complex movement patterns can be stored in structured biological E-I
circuits.
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suggest that this oscillatory activity contains dis- w
tinct frequency modes’ (Fig. 1B & C). We analysed
activities generated from a popular network model
of motor cortex” and instead observed a continuum
of oscillatory modes, reflecting the random nature
of the network’s recurrent connectivity (Fig. 1D, i).
While a large random network might still provide a
sufficiently rich dynamics to produce trajectories in
line with the observed dynamics, replicating the ob-
served eigenspectrum, we asked how distinct oscil-
latory modes can be represented in more compact,
structured networks.

where activity in the difference modes, correspond-
ing to the preparatory subspace, quickly decays to
zero (cf. Eq. 1), while they transiently amplify the
oscillating sum modes’ (Fig. 1G). The uni-directional
connectivity from E, to E;, provides the crucial asym-
metry that is required to generate oscillatory dynam-
ics. We speculate that this asymmetry corresponds
to the uni-directional projections from IT to PT exci-
tatory neurons.’

To generate more complex motor trajectories we
combine a discrete set of oscillatory modes into a
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w= o -w w -kw |20 1 0 1| experimentallyobserved neural trajectories (Fig. 1C).
0 -w w -kw 0 -1 0 1 We generated activities from random initial condi-

tions and confirmed that the spectrum resembled the
experimentally reported values (Fig. 1D, ii & iii). The

where r is a vector of excitatory and inhibitory firing
rates. Following previous work, we consider r to be
the the difference from a firing rate baseline,” thus, r
can be negative. We adhere to Dale’s law and main-
tain the corresponding sign in the columns of the re-
current weight matrix W (Fig. 1E & F, top). Trans-
forming M into a sum and difference basis reveals the

different oscillatory modes can also be understood as
temporal basis functions. By initialising the system
from preparatory states with appropriate weighting
in each frequency mode, the network can generate
precise neural trajectories (Fig. TH). We speculate
that different frequency modes may be facilitated by
specific interneuron subtypes that selectively project
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Figure 1. (A) Top: Macaque hand trajectories during a reaching task. Target locations varied across con-
ditions, indicated by greyscale. Bottom: Single neuron recordings during different trials in A. Vertical line:
movement onset. (B) Eigenvalue distribution of linear dynamical systems fitted to condition averaged tra-
jectories.” (C) Discrete oscillatory modes corresponding to the clusters in B. (D) jPCA eigenvalue spectra of
neural activities generated from different network models (Methods described in Sabatini and Kaufman’).
i) Activity generated from random initial states in a stability-optimized network by Hennequin et al.? i) Our
network, initialised in different random initial states. iii) Same as ii), but with process noise. (E) E-I circuit
structure to generate non-normal, oscillatory dynamics. (F) Different weight matrices with excitatory (blue)
and inhibitory (red) synapses. See text for details. (G) Activity of difference and sum modes (inset) of the
circuit in E. (H) Example trajectory composed out of multiple activated oscillatory modes of different fre-
quencies (inset). Recovered trajectory after mixing and sign adjustment in green. (1) Activity trajectories of
single output modes, initiated via single cell stimulation. The mixing matrix, Q, was constructed to produce
the same trajectory as in H (black). Panels A, B & C adapted from Sabatini and Kaufman.’

to different excitatory subtypes,” as is required in our A change of variables does in general not maintain

model (cf. Eq. 1 and Fig. 1F, center).

So far, our networks are organized in a block diago-
nal structure (Fig. 1F, top & center), where different
frequency modes form disassociated sub-networks
and single neurons oscillate at a specific frequency
(cf. Fig. 1H, inset). We also considered only one set
frequency modes that can control only a single out-
put mode (cf. Fig. 1H). This is different from cor-
tical circuits, where neurons are more densely con-
nected, show more complex dynamics (cf. Fig. 1A,
bottom), and control hundreds of muscles. To dis-
tribute and mix different oscillatory modes, we in-
troduce a change of variables such that the recurrent
weight matrix becomes less sparse, while the connec-
tivity structure between presumed PT and IT neurons
is maintained:
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where we now consider 5 x N frequency modes that
together control N output degrees of freedom, and Q
mixes all 5 x N oscillatory modes, i.e., Q € R*V*N,
This allows to store specific motor primitives into the
network that can be recalled by stimulating just a
single neuron (Fig. 1/), reminiscent of complex move-
ments triggered by cortical microstimulation.®’

the sign structure of a matrix, i.e., we violate Dale’s
law. However, when E-I difference modes quickly de-
cay to zero after movement onset (cf. Fig. 1G), ex-
citatory and inhibitory neuron pairs have very simi-
lar activity and we can replace a negative excitatory
(or positive inhibitory) connection by a negative in-
hibitory (or positive excitatory) connection originat-
ing from the corresponding E or | neuron. (Fig. 1H).

In summary, we present a general framework for
the design of structured recurrent E-I circuits based
on established dynamical motifs (non-normal and
oscillatory dynamics), where experimental observa-
tions (discrete eigenspectra) together with biologi-
cally plausible connectivity structures (Dale’s law)
provide the necessary constraints to relate different
cortical cell types to computational function.
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